Advertisement

Systemic Therapies for Patients with Metastatic Spinal Disease

  • Panagiotis J. Vlachostergios
  • Ashish SaxenaEmail author
Chapter
  • 94 Downloads

Abstract

Spinal metastasis is a common condition in metastatic cancer patients and may lead to debilitating neurological dysfunction and pain if left unaddressed. Comprehensive assessment and management involves a multidisciplinary team consisting of neurological surgeons, radiation oncologists, medical oncologists, and other specialties. Herein, we review the role of systemic anticancer therapies in the management of metastatic spinal disease. We also discuss the most recent data on the effects of systemic therapies on bone-specific and general clinical outcomes in patients with spinal metastases.

Keywords

Systemic therapy Spinal metastases Bone metastases Central nervous system metastases Spinal cord Vertebral column Chemotherapy Targeted therapy Immunotherapy Supportive care 

References

  1. 1.
    Barzilai O, Laufer I, Yamada Y, Higginson DS, Schmitt AM, Lis E, et al. Integrating evidence-based medicine for treatment of spinal metastases into a decision framework: neurologic, oncologic, mechanicals stability, and systemic disease. J Clin Oncol. 2017;35(21):2419–27.CrossRefPubMedGoogle Scholar
  2. 2.
    Sciubba DM, Petteys RJ, Dekutoski MB, Fisher CG, Fehlings MG, Ondra SL, et al. Diagnosis and management of metastatic spine disease. A review. J Neurosurg Spine. 2010;13(1):94–108.PubMedCrossRefGoogle Scholar
  3. 3.
    Sciubba DM, Gokaslan ZL. Diagnosis and management of metastatic spine disease. Surg Oncol. 2006;15(3):141–51.PubMedCrossRefGoogle Scholar
  4. 4.
    Laufer I, Rubin DG, Lis E, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors. Oncologist. 2013;18:744–51.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kommalapati A, Tella SH, Esquivel MA, Correa R. Evaluation and management of skeletal disease in cancer care. Crit Rev Oncol Hematol. 2017;120:217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Budczies J, von Winterfeld M, Klauschen F, Bockmayr M, Lennerz JK, Denkert C, et al. The landscape of metastatic progression patterns across major human cancers. Oncotarget. 2015;6(1):570–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Bines J, Earl H, Buzaid AC, Saad ED. Anthracyclines and taxanes in the neo/adjuvant treatment of breast cancer: does the sequence matter? Ann Oncol. 2014;25(6):1079–85.PubMedCrossRefGoogle Scholar
  8. 8.
    Zheng R, Han S, Duan C, Chen K, You Z, Jia J, et al. Role of taxane and anthracycline combination regimens in the management of advanced breast cancer: a meta-analysis of randomized trials. Medicine (Baltimore). 2015;94(17):e803.CrossRefGoogle Scholar
  9. 9.
    Kamby C, Vestlev PM, Mouridsen HT. Site-specific effect of chemotherapy in patients with breast cancer. Acta Oncol. 1992;31(2):225–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351(15):1502–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Kyriakopoulos CE, Chen YH, Carducci MA, Liu G, Jarrard DF, Hahn NM, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol. 2018;36(11):1080–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet. 2010;376(9747):1147–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Ignatoski KM, Friedman J, Escara-Wilke J, Zhang X, Daignault S, Dunn RL, et al. Change in markers of bone metabolism with chemotherapy for advanced prostate cancer: interleukin-6 response is a potential early indicator of response to therapy. J Interf Cytokine Res. 2009;29(2):105–12.CrossRefGoogle Scholar
  14. 14.
    Santini D, Morelli F, Bertoldo F, Facchini G, Rizzi D, Gatti D, et al. Impact of cabazitaxel on metastatic bone health in patients with castration resistant prostate cancer previously treated with docetaxel: CaBone Study. J Clin Oncol. 2018;36(6_suppl):TPS405.CrossRefGoogle Scholar
  15. 15.
    Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;379(21):2040–51.CrossRefPubMedGoogle Scholar
  17. 17.
    Kuchuk M, Addison CL, Clemons M, Kuchuk I, Wheatley-Price P. Incidence and consequences of bone metastases in lung cancer patients. J Bone Oncol. 2013;2(1):22–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Jacus MO, Daryani VM, Harstead KE, Patel YT, Throm SL, Stewart CF. Pharmacokinetic properties of anticancer agents for the treatment of central nervous system tumors: update of the literature. Clin Pharmacokinet. 2016;55(3):297–311.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Woolf DK, Padhani AR, Makris A. Assessing response to treatment of bone metastases from breast cancer: what should be the standard of care? Ann Oncol. 2015;26(6):1048–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Azad GK, Taylor BP, Green A, Sandri I, Swampillai A, Harries M, et al. Eur J Nucl Med Mol Imaging. 2018;46:821.  https://doi.org/10.1007/s00259-018-4223-9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Iagaru A, Mittra E, Mosci C, Dick DW, Sathekge M, Prakash V, et al. Combined 18F-fluoride and 18F-FDG PET/CT scanning for evaluation of malignancy: results of an international multicenter trial. J Nucl Med. 2013;54(2):176–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Michaels AY, Keraliya AR, Tirumani SH, Shinagare AB, Ramaiya NH. Systemic treatment in breast cancer: a primer for radiologists. Insights Imaging. 2016;7(1):131–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Varenhorst E, Klaff R, Berglund A, Hedlund PO, Sandblom G. Scandinavian Prostate Cancer Group (SPCG) Trial No. 5. Predictors of early androgen deprivation treatment failure in prostate cancer with bone metastases. Cancer Med. 2016;5(3):407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lassemillante AC, Doi SA, Hooper JD, Prins JB, Wright OR. Prevalence of osteoporosis in prostate cancer survivors: a meta-analysis. Endocrine. 2014;45(3):370–81.PubMedCrossRefGoogle Scholar
  25. 25.
    Logothetis CJ, Basch E, Molina A, Fizazi K, North SA, Chi KN, et al. Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial. Lancet Oncol. 2012;13(12):1210–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Loriot Y, Miller K, Sternberg CN, Fizazi K, De Bono JS, Chowdhury S, et al. Effect of enzalutamide on health-related quality of life, pain, and skeletal-related events in asymptomatic and minimally symptomatic, chemotherapy-naive patients with metastatic castration-resistant prostate cancer (PREVAIL): results from a randomised, phase 3 trial. Lancet Oncol. 2015;16(5):509–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Rizzo S, Galvano A, Pantano F, Iuliani M, Vincenzi B, Passiglia F, et al. The effects of enzalutamide and abiraterone on skeletal related events and bone radiological progression free survival in castration resistant prostate cancer patients: an indirect comparison of randomized controlled trials. Crit Rev Oncol Hematol. 2017;120:227–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Efstathiou E, Titus M, Wen S, Hoang A, Karlou M, Ashe R, et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur Urol. 2015;67(1):53–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Wu Q, Li J, Zhu S, Wu J, Chen C, Liu Q, et al. Breast cancer subtypes predict the preferential site of distant metastases: a SEER based study. Oncotarget. 2017;8(17):27990–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Harano K, Lei X, Gonzalez-Angulo AM, Murthy RK, Valero V, Mittendorf EA, et al. Clinicopathological and surgical factors associated with long-term survival in patients with HER2-positive metastatic breast cancer. Breast Cancer Res Treat. 2016;159(2):367–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuijpers CCHJ, Hendriks LEL, Derks JL, Dingemans AC, van Lindert ASR, van den Heuvel MM, et al. Association of molecular status and metastatic organs at diagnosis in patients with stage IV non-squamous non-small cell lung cancer. Lung Cancer. 2018;121:76–81.PubMedCrossRefGoogle Scholar
  32. 32.
    Choi BD, Shankar GM, Sivaganesan A, Van Beaver LA, Oh K, Shin JH. Implication of biomarker mutations for predicting survival in patients with metastatic lung cancer to the spine. Spine (Phila Pa 1976). 2018;43(21):E1274–80.CrossRefGoogle Scholar
  33. 33.
    Bittner N, Balikó Z, Sárosi V, László T, Tóth E, Kásler M, et al. Bone metastases and the EGFR and KRAS mutation status in lung adenocarcinoma--the results of three year retrospective analysis. Pathol Oncol Res. 2015;21(4):1217–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang G, Cheng R, Zhang Z, Jiang T, Ren S, Ma Z, et al. Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases. Sci Rep. 2017;7:42979.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hong SH, Kim YS, Lee JE, Kim IH, Kim SJ, Han D, et al. Clinical characteristics and continued epidermal growth factor receptor tyrosine kinase inhibitor administration in EGFR-mutated non-small cell lung cancer with skeletal metastasis. Cancer Res Treat. 2016;48(3):1110–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kalra S, Verma J, Atkinson BJ, Matin SF, Wood CG, Karam JA, et al. Outcomes of patients with metastatic renal cell carcinoma and bone metastases in the targeted therapy era. Clin Genitourin Cancer. 2017;15(3):363–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Beuselinck B, Wolter P, Karadimou A, Elaidi R, Dumez H, Rogiers A, et al. Concomitant oral tyrosine kinase inhibitors and bisphosphonates in advanced renal cell carcinoma with bone metastases. Br J Cancer. 2012;107(10):1665–71.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tokito T, Shukuya T, Akamatsu H, Taira T, Ono A, Kenmotsu H, et al. Efficacy of bevacizumab-containing chemotherapy for non-squamous non-small cell lung cancer with bone metastases. Cancer Chemother Pharmacol. 2013;71(6):1493–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Addison CL, Pond GR, Cochrane B, Zhao H, Chia SK, Levine MN, et al. Correlation of baseline biomarkers with clinical outcomes and response to fulvestrant with vandetanib or placebo in patients with bone predominant metastatic breast cancer: an OCOG ZAMBONEY sub-study. J Bone Oncol. 2015;4(2):47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mbagui R, Langrand-Escure J, Annede P, Mery B, Ceccaldi B, Guy JB, et al. Safety of spinal radiotherapy in metastatic cancer patients receiving bevacizumab therapy: a bi-institutional case series. Anti-Cancer Drugs. 2015;26(4):443–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Coleman RE. Bone cancer in 2011: prevention and treatment of bone metastases. Nat Rev Clin Oncol. 2011;9(2):76–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Gralow JR, Biermann JS, Farooki A, Fornier MN, Gagel RF, Kumar R, et al. NCCN task force report: bone health in cancer care. J Natl Compr Canc Netw. 2013;11(Suppl 3):S1–50; quiz S51.PubMedCrossRefGoogle Scholar
  43. 43.
    Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer. 2003;98(8):1735–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Himelstein AL, Foster JC, Khatcheressian JL, Roberts JD, Seisler DK, Novotny PJ, et al. Effect of longer-interval vs standard dosing of zoledronic acid on skeletal events in patients with bone metastases: a randomized clinical trial. JAMA. 2017;317(1):48–58.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401–19.CrossRefPubMedGoogle Scholar
  46. 46.
    Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Vadhan-Raj S, von Moos R, Fallowfield LJ, Patrick DL, Goldwasser F, Cleeland CS, et al. Clinical benefit in patients with metastatic bone disease: results of a phase 3 study of denosumab versus zoledronic acid. Ann Oncol. 2012;23(12):3045–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Scagliotti GV, Hirsh V, Siena S, Henry DH, Woll PJ, Manegold C, et al. Overall survival improvement in patients with lung cancer and bone metastases treated with denosumab versus zoledronic acid: subgroup analysis from a randomized phase 3 study. J Thorac Oncol. 2012;7(12):1823–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15(7):738–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang K, Kim S, Cremasco V, Hirbe AC, Collins L, Piwnica-Worms D, et al. CD8+ T cells regulate bone tumor burden independent of osteoclast resorption. Cancer Res. 2011;71(14):4799–808.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Rosner S, Sen F, Postow M. Response after treatment with pembrolizumab in a patient with myelophthisis due to melanoma: the role of checkpoint inhibition in the bone. J Immunother Cancer. 2017;5:34.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Levy A, Massard C, Soria JC, Deutsch E. Concurrent irradiation with the anti-programmed cell death ligand-1 immune checkpoint blocker durvalumab: single centre subset analysis from a phase 1/2 trial. Eur J Cancer. 2016;68:156–62.PubMedCrossRefGoogle Scholar
  54. 54.
    Di Lorenzo R, Ahluwalia MS. Targeted therapy of brain metastases: latest evidence and clinical implications. Ther Adv Med Oncol. 2017;9(12):781–96.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Skeoch GD, Tobin MK, Khan S, Linninger AA, Mehta AI. Corticosteroid treatment for metastatic spinal cord compression: a review. Global Spine J. 2017;7(3):272–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vecht CJ, Haaxma-Reiche H, van Putten WL, de Visser M, Vries EP, Twijnstra A. Initial bolus of conventional versus high-dose dexamethasone in metastatic spinal cord compression. Neurology. 1989;39(9):1255–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Spratt DE, Beeler WH, de Moraes FY, Rhines LD, Gemmete JJ, Chaudhary N, et al. An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report. Lancet Oncol. 2017;18(12):e720–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Medicine, Division of Hematology & Medical OncologyNewYork-Presbyterian Hospital/Weill Cornell MedicineNew YorkUSA

Personalised recommendations