Advertisement

Determination of Critical Depth of Cutting Soil by Cutters with Building Excavators

  • S. V. Kravets
  • O. P. LukianchukEmail author
  • O. V. Kosiak
  • O. O. Gaponov
Conference paper
  • 12 Downloads
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 73)

Abstract

In civil and reclamation construction, when laying the foundations and other elements of structures, work is carried out, which is accompanied by deep soil development. The energy intensity of the working process increases significantly at subcritical values of the chips due to the blocking of the part of the soil. Let us determine the critical depth of the asymmetric blocked one side. The calculated dependences show that as the cutting angle of the cutter decreases from 50° to 20°, the relative critical depth of asymmetric blocked cutting (hкp1/bp) increases: for refractory and semi-solid clay, from 1.71 to 3.12; for semi-hard loam from 1.76 to 3.27; for hard sand from 1.78 to 3.75. For semi-blocked cutting, this depth increases: for refractory clay, from 2.92 to 5.21; for semi-solid clay from 2.78 to 5.03; for semi-hard loam from 2.77 to 5.14; for solid sandwiches from 2.65 to 5.45. The mathematical models for determining the critical depth of cutting for the extreme lateral incisors of the multi-slip chains of trench excavators, operating in conditions of asymmetric lateral cutting and semi-block cutting, are obtained. Based on the obtained approximated mathematical models in each particular case, based on the data on the thawing soils recommended by BNiP, it was possible, depending on the cutting angle of the cutter, within the cutting angle of 20°…50°, to determine the rational depth of cutting for the extreme lateral incisors of the multi-slip chains of trench excavators.

Keywords

Construction Laying the foundations Excavator Cutting of the soil Critical depth 

References

  1. 1.
    Alekseeva, T. V., Artemev, K. A. & Bromberh, A. A. (1972). Dorozhnyie mashyni. ch. I. Mashyni dlia zemlianikh rabot [Road machines. Machines for earthmovings]. (p. 504) Moscow: Mashynostroenye.Google Scholar
  2. 2.
    Andresen, L. & Jostad, H. P. (2002). A constitutive model for anisotropic and strain-softening clay. Proceedings Numerical Modern in Geomechanics (pp. 79–84). NUMOG VIII, Rome, Italy.Google Scholar
  3. 3.
    Artem’yev, K. A. (1989). Teoriya rezaniya gruntov zemleroyno-transportnymi mashinami [Theory of soil cutting by earth-moving machines]. (p. 80). Omsk: OmPI.Google Scholar
  4. 4.
    Hashash, Y. M. A., & Whittle, A. J. (2002). Mechanism of load transfer and arching for brand excavations in clay. J. of Geotechnical and Geoenvironmental Engineering, 128(3), 187–197.CrossRefGoogle Scholar
  5. 5.
    Karlsrud, K. & Andresen, L. (2008). Design and performance of deep excavations in sof clays. International Conference on Case Histories in Geotechnical Engineering. 9.Google Scholar
  6. 6.
    Kovalʹ, A. B., Musiyko, V. D., & Leychenko, YU. B. (2015). Osnovy syntezu komponuvalʹnoyi skhemy universalʹnykh zemle-ryynykh mashyn bezperervnoyi diyi [Fundamentals of the synthesis of the layout scheme of universal ground-breaking machines of continuous action]. Systemy i srodki transportu samochodowego. Wubrane zagadnienie. Monografia Nr 4.38 Seria: Transport pod redakcja naukowa Kazemierza Lejdy (pp. 263–268). Rzeszów (Polska): Politechnika Rzeszowska.Google Scholar
  7. 7.
    Kravets, S. V., Kovanko, V. V. & Lukyanchuk, O. P. (2015). Naukovi osnovy stvorennia zemleryino-yarusnykh mashyn i pidzem-norukhomykh prystroiv: monohrafiia [Scientific basis for the creation of earth-tiered cars and underground moving devices: a monograph]. (p. 322) Rivne: NUVHP.Google Scholar
  8. 8.
    Krytychnohlybynni dvoyarusni hruntorozpushuvachi: monohrafiya [Critical deep two tier soil rippers]/S.V.Kravetsʹ ta in.; za zah. red. S.V. Kravtsya. (p. 235) Rivne: NUVHP. ISBN 978-966-327-384-6 (2018).Google Scholar
  9. 9.
    Musiyko, V. D. (2015). Masshtabni efekty pry fizychnomu modelyuvanni protsesiv rizannya gruntiv [Large-scale effects in the physical modeling of soil-cutting processes]. Visnyk Natsio-nalʹnoho universytetu vodnoho hospodarstva ta pryrodokorystuvannya. Zbirnyk naukovykh pratsʹ. Tekhnichni nauky (Vol. 2(70), pp. 112–119). Rivne: NUVHP, Vyp.Google Scholar
  10. 10.
    Stanevskyi, V. P. (1984) Sovershenstvovanye robocheho protsessa zemleroinikh mashyn [Perfection of the working process of digging machines] (p. 128). K.: Vyshcha shkola. Yzd-vo pry KHU.Google Scholar
  11. 11.
    Vetrov, A. Yu. (1972). Rezaniye gruntov zemleroynymi mashinami [Soil cutting by earth moving machines]. (p. 359). Moscow: Mashinostroyeniye.Google Scholar
  12. 12.
    Zav’yalov, A. M. (2012). Matematicheskoye modelirovaniye rabochikh protsessov dorozhnykh i stroitel’nykh mashin: imitatsionnyye i adaptivnyye modeli [Mathematical modeling of work processes of road and construction machines: imitation and adaptive models]: monografiya (p. 411). Omsk: SibADI.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. V. Kravets
    • 1
  • O. P. Lukianchuk
    • 1
    Email author
  • O. V. Kosiak
    • 1
  • O. O. Gaponov
    • 2
  1. 1.Department of Building, Road, Melioration, Agricultural Machinery and Equipment (BRMAME)National University of Water and Environmental EngineeringRivneUkraine
  2. 2.Kharkiv National Automobile and Highway UniversityKharkivUkraine

Personalised recommendations