Advertisement

Experimental Researches of Concrete Ultimate Characteristics and Strength of Compressed and Bended Reinforced Concrete Elements

  • Dmytro LazarievEmail author
  • Yurii Avramenko
  • Oleksandr Zyma
  • Pavlo Pasichnyk
Conference paper
  • 11 Downloads
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 73)

Abstract

The results of experimental researches of the work of short compressed and bent elements under the action of, respectively, longitudinal loading and bending moment are given. The influence of the normal cross-section reinforcement percentage on ultimate deformation of the most compressed concrete fiber and strength of reinforced concrete elements is established. Comparative analysis of experimental data with theoretical calculations based on deformation model with an extreme criterion was performed.

Keywords

Bearing capacity Deformation model Strength The extreme criterion Ultimate strain 

References

  1. 1.
    Shkurupiy, O., Lazariev, D., & Davydenko, Y. (2018). Strength design of compressed reinforced concrete elements by deformation method based on extreme criterion. International Journal of Engineering & Technology, 7(3.2), 334–338.  https://doi.org/10.14419/ijet.v7i3.2.14430.
  2. 2.
    Mitrofanov, V. P. (2000). Optimization strength theory of reinforced concrete bar elements and structures with practical aspects of its use. Bygningsstatiske Meddelelser. Copenhagen: Danish Society for Structural Science and Engineering, 71(4), 73–125.Google Scholar
  3. 3.
    Noghabai, K. (2000). Beams of fibrous concrete in shear and bending: Experiment and model. ASCE Journal of Structural Engineering, 126, 243–251.  https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(243).CrossRefGoogle Scholar
  4. 4.
    Bambura, A. N., & Gurkovskiy, A. B. K. (2003). postroeniyu deformatsionnoy teorii zhelezobetonnyih sterzhnevyih sistem na eksperimentalnoy osnove. Budivelni konstruktsii: zbirnyk naukovyh prats. K.: Budivelnyk. Vyp. 59. pp. 121–130.Google Scholar
  5. 5.
    Hwang, J.-H., Lee, D. H., Ju, H., Kim, K. S., Seo, S.-Y., & Kang, J.-W. (2013). Shear behavior models of steel fiber reinforced concrete beams modifying softened truss model approaches. Materials, 6, 4847–4867.  https://doi.org/10.3390/ma6104847.CrossRefGoogle Scholar
  6. 6.
    Azizov, T. N. (2008). Sposob opredeleniya granichnyih deformatsiy betona na nishodyaschey vetvi. Resursoekonomni materialy, konstruktsii, budivli ta sporudy: Zbirnyk naukovyh prats. Rivne: NUVGP. Vyp. 16. Ch. 2. pp. 3–7.Google Scholar
  7. 7.
    Bencardino, F., Rizzuti, L., Spadea, G., & Swamy, R. N. (2008). Stress-strain behavior of steel fiber-reinforced concrete in compression. Journal of Materials in Civil Engineering, 20, 255–263.  https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255).CrossRefGoogle Scholar
  8. 8.
    Babych, Y. M., & Zarechanskyi, O. O. (2006). Eksperymentalni doslidzhennia hnuchkykh stysnuto-zihnutykh zalizobetonnykh elementiv pry poperechnykh povtornykh navantazhenniakh riznykh rivniv. Budivelni konstruktsii: Zbirnyk naukovykh prats. K.: NDIBK. Vyp. 65. pp. 253–259.Google Scholar
  9. 9.
    Galinska, T., Ovsii, D, & Ovsii, M. (2018). The combining technique of calculating the sections of reinforced concrete bending elements normal to its longitudinal axis, based on the deformation model. International Journal of Engineering & Technology, 7(3.2), 123–127.  https://doi.org/10.14419/ijet.v7i3.2.14387.
  10. 10.
    Mitrofanov, V. P., Shkurupiy, A. A., & Lazarev, D. N. (2007). Metodika izmereniya predelnoy deformatsii betona na szhatoy grani zhelezobetonnyih elementov. Bashtovi sporudy: Materialy, konstruktsii, tehnologii: zbirnyk naukovyh prats. Makiivka: DNABA, 6(68), 96–100.Google Scholar
  11. 11.
    Masiuk, G., Yushchuk, O., & Paschenko, A. (2018). Experimental investigations of the stress and strain state of continuous reinforced concrete beams under the action of low-cyclic repetitive and alternating loads. International Journal of Engineering & Technology, 7(3.2), 236–238.  https://doi.org/10.14419/ijet.v7i3.2.14410.
  12. 12.
    Dovzhenko, O., & Pohribnyi, V., Karabash, L. (2018). Experimental study on the multikeyed joints of concrete and reinforced concrete elements. International Journal of Engineering & Technology, 7(3.2), 354–359.  https://doi.org/10.14419/ijet.v7i3.2.14552.
  13. 13.
    Barashykov, A. I., & Zadorozhnikova, I. V. (2005). Sproshcheni rozrakhunky nesuchoi zdatnosti normalnykh pereriziv zghynalnykh zalizobetonnykh elementiv za deformatsiinoiu modelliu. Resursoekonomni materialy, konstruktsii, budivli ta sporudy: zbirnyk naukovykh prats. Rivne: NUVHP. Vyp. 12. pp. 109–115.Google Scholar
  14. 14.
    Zheng, L., & Wang, S. (2002). Experimental investigational the failure patterns and mechanical properties for plain concrete with crocks. Rapair, Rejuvanifion and enhancement of concrete. In Proceedings of the International Seminar held at the University of Dunolec, Scotland, UK. 5–6 Sept. 2002. London: Thomas Telford. pp. 257–266.Google Scholar
  15. 15.
    Krus, Y. A., & Krus, A. Y. (2007). Vliyanie rezhima nagruzheniya na ochertanie diagrammyi mehanicheskogo sostoyaniya betonu, tip i strukturu approksimiruyuschey funktsii. Kommunalnoe hozyaystvo gorodov: sbornik nauchnyih trudov. K.: Tehnika. Vyp. 76. pp. 89–95.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Poltava National Technical Yuri Kondratyuk UniversityPoltavaUkraine
  2. 2.Kyiv National University of Construction and ArchitectureKyivUkraine

Personalised recommendations