Advertisement

Model Test Entity

  • Claus WeilandEmail author
Chapter
  • 7 Downloads

Abstract

When humans have built large technical devices like bridges, ships, buildings, embankment dams, airplanes, space planes, reactors for chemical purposes, hydraulic engines (pumps, compressors, turbines) etc. there was a need to fabricate geometrically similar models of these devices in order to investigate and test their physical behavior in ground based test facilities. The main question from the physical point of view in this regard is under what conditions are the experimental test results, received with geometrically similar models in test facilities, transferable to the situation of the original devices? We define the three similarity rules, which must be kept for a suitable testing of the physics of originals in test facilities, [1, 2].

References

  1. 1.
    Braun, J.: Strömungsmaschinen als Kraft- und Arbeitsmaschinen, Teil 1 Hydraulische Maschinen. Books on Demand, Norderstedt, Germany (2015)Google Scholar
  2. 2.
    Görtler, H.: Dimensionsanalyse. Theorie der physikalischen Dimensionen und Anwendungen. Springer, Berlin (1975)zbMATHGoogle Scholar
  3. 3.
    Beitz, W., Küttner, K.-H. (eds.): Dubbel: Taschenbuch für den Maschinenbau, 17th edn. Springer, Berlin (1990)Google Scholar
  4. 4.
    Krek, R.M., Eitelberg, G., Kastell, D.: Hyperboloid Flare Experiments in the HEG Facility. Deutsche Forschungsanstalt für Luft- und Raumfahrt, DLR-IB 223-95 A 43 (1995)Google Scholar
  5. 5.
    Devezeaux, D., Tribot, J.P.: Synthesis of contribution to the hyperboloid-flare F4 test case TC1.C within the Manned Space Transportation Program Workshop 1996. ONERA, Technical Report N\(^{\circ }\) RT 92/6121 SY (1997)Google Scholar
  6. 6.
    Hirschel, E.H.: Three-Dimensional Attached Viscous Flow. Springer, Berlin (2014)CrossRefGoogle Scholar
  7. 7.
    Schlichting, H., Truckenbrodt, E.: Aerodynamik des Flugzeuges, vol. 1. Springer, Berlin (1967)CrossRefGoogle Scholar
  8. 8.
    Hirschel, E.H.: Basics of Aerothermodynamics, 2nd edn. Springer, Berlin (2015)Google Scholar
  9. 9.
    Weiland, C.: Computational Space Flight Mechanics. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 10.
    Brenner, G., Hannemann, K., Kordulla, W.: The Hyperboloid-Flare Experiment - Summary of numerical results. DLR Internal Report IB 221-93 C 28 (1993)Google Scholar
  11. 11.
    Bousquet, J.M., Faubert, A.: Synthesis of hyperboloid-flare results in R5Ch, R3Ch and S4MA wind tunnel conditions. ONERA, Rapport Technique n\(^{\circ }\) RT 63/6122 AY, HT-TN-E-1-314-ONER (1995)Google Scholar
  12. 12.
    Sagnier, P.: Synthesis of hyperboloid-flare experiments in ONERA F4, S4MA, R3Ch, R5Ch wind tunnels and DLR H2K, RWG wind tunnels. ONERA, Rapport Technique n\(^{\circ }\) RT 72/6121 SY (1995)Google Scholar
  13. 13.
    Weiland, C.: Aerodynamic Data of Space Vehicles. Springer, Berlin (2014)CrossRefGoogle Scholar
  14. 14.
    Hirschel, E.H., Weiland, C.: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin and AIAA (Progress in Astronautics and Aeronautics), Reston USA (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BruckmühlGermany

Personalised recommendations