Advertisement

Dimensionless Numbers—Similarity Parameters: A Look at the Name Holders

  • Claus WeilandEmail author
Chapter
  • 11 Downloads

Abstract

In Chaps.  2,  3 and  4 we presented various methods with which a count of dimensional numbers, depending on different methods, can be derived. Obviously, Buckingham’s \(\varPi \)theorem has, there is no doubt, the capacity with the greatest possible extent. Historically many of the similarity quantities for the first time were formulated as a single event, in particular those known from the 18th and the first part of the 19th century. Therefore, the appearance of the dimensionless numbers obviously was an evolutionary process. Most of the power products, later noted as dimensionless numbers or similarity parameters, were established before the mathematical calculus of the analysis of dimension, Buckingham’s \(\varPi \)theorem, was developed.

References

  1. 1.
    Calinger, R.S.: Mathematical Genius. Mathematical Genius in the Enlightenment. Princeton University Press, Princeton (2015)zbMATHGoogle Scholar
  2. 2.
    Gautschi, W.: Leonhard Euler: His Life, the Man, and His Work. SIAM Rev. 50(1), 3–33 (2008)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Sommerfeld, A.: Mechanik der deformierbaren Medien, Akademische Verlagsgesellschaft Geest & Portig (1954)Google Scholar
  4. 4.
    Zierep, J.: Ähnlichkeitsgesetze und Modellregeln der Strömungsmechanik. G. Braun Verlag, Karlsruhe (1972)zbMATHGoogle Scholar
  5. 5.
    N.N.: Grace’s Guide to British Industrial History: William Froude. https://www.gracesguide.co.uk/William_Froude
  6. 6.
    Weber, M.: In: Jahrbuch der Schiffbautechnischen Gesellschaft (1919)Google Scholar
  7. 7.
    Herwig, H.: Strömungsmechanik A - Z. Vieweg Verlag, Wiesbaden (2001)Google Scholar
  8. 8.
    Krüger, S.: Vorlesungsmanuskript. Universität Hamburg-Harburg (2009)Google Scholar
  9. 9.
    Saunders, H.E.: Hydrodynamics in Ship Design, vol. 2 (1957)Google Scholar
  10. 10.
    Weber, M.: Jahrbuch der Schiffbautechnischen Gesellschaft, pp. 274–388 (1930)Google Scholar
  11. 11.
    Hüttl, C.: Einfluß der Sprayausbreitung und Gemischbildung auf die Verbrennung von Biodieselgemischen. In: Brüggemann, D. (ed.) Thermodynamik, vol. 19. Logos Verlag, Berlin (2011)Google Scholar
  12. 12.
    Pfeifer, C.: Experimentelle Untersuchungen von Einflußfaktoren auf die Selbstzündung von gasförmigen und flüssigen Brennstofffreistrahlen. Karlsruhe Institute of Technology, Scientific Publishing, Scientific Report 7555 (2010)Google Scholar
  13. 13.
    Ranz, W.E.: On Sprays and Spraying: A Survey of Spray Technology for Research and Development Engineers. Pennsylvania State Univ. USA, Bull. 1956, 655 (1956)Google Scholar
  14. 14.
    Lin, S.P., Reitz, R.D.: Drop and Spray Formation from a Liquid Jet. Annual Review of Fluid Mechanics 30, 85–105 (1998)Google Scholar
  15. 15.
    Levebvre, A.H.: Gas Turbine Combustion. Purdue University, Indiana, USA, Thermal and Combustion Center (1998)Google Scholar
  16. 16.
    Wauer, J.: Die Mechanik und ihre Fachvertreter an der Universität Karlsruhe. KIT Scientific Publishing, Karlsruhe (2017)Google Scholar
  17. 17.
    Böckh, V., P., Wenzel, T.: Wärmeübertragung. Springer Vieweg, Berlin (2014)Google Scholar
  18. 18.
    Polifke, W., Kopitz, J.: Wärmeübertragung Grundlagen, analytische und numerische Methoden. Pearson Studium, Munich (2009)Google Scholar
  19. 19.
    Jackson, J.D.: Osborne Reynolds - Scientist, Engineer and Pioneer. Proc. Roy. Soc. Lond. A 451, 49–86 (1995)Google Scholar
  20. 20.
    Fairclough, C.: Happy Birthday, Osborne Reynolds (2017). https://www.comsol.com/blogs/happy-birthday-osborne-reynolds/
  21. 21.
    Reynolds, O.: An experimental investigation of the circumstances which determine wether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. R. Soc., Phil. Trans. (1883)Google Scholar
  22. 22.
    Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. R. Soc., Phil. Trans. (1895)Google Scholar
  23. 23.
    Oswatitisch, K.: Österreich. Ing. Zeitschrift 6, 421–426 (1963)Google Scholar
  24. 24.
    Hirschel, E.H.: Basics of Aerothermodynamics, 2nd edn. Springer, Berlin (2015)Google Scholar
  25. 25.
    van der Bliek, J.A.: The European Transonic Wind Tunnel. Buch und Offsetdruck Thierbach (1996)Google Scholar
  26. 26.
  27. 27.
    van Dyke, M.: An Album of Fluid Motion. The Parabolic Press, Stanford California (1982)Google Scholar
  28. 28.
  29. 29.
    Billington, N.S., Roberts, B.M.: Building Services Engineering: A Review of Development. Pergamon Press, Oxford (1982)Google Scholar
  30. 30.
    Zhao, C., Hobbs, B.E., Ord, A.: Convective and Advective Heat Transfer in Geological Systems. Springer, Berlin (2008)zbMATHGoogle Scholar
  31. 31.
  32. 32.
    Eckert, E.R.G.: Wärme- und Stoffaustausch. Springer, Berlin (1966)CrossRefGoogle Scholar
  33. 33.
    Minkowycz, W.J.: Professor Ernst R.G. Eckert (1904-2004). Int. J. Heat Mass Trans. Elsevier 49 (2006)Google Scholar
  34. 34.
    Pfender, E.: Memorial Tributes. The National Academic Press, vol. 11, (2007), pp. 108–113Google Scholar
  35. 35.
    Inger, G.R.: Scaling Nonequilibrium-Reacting Flows: The Legacy of Gerhard Damköhler. J. Spacecraft Rockets 38(2) (2001)Google Scholar
  36. 36.
    Wicke, E.: Gerhard Damköhler - Begründer der Chemischen Reaktionstechnik. Chem.-Ing.-Tech. 56(12) (1984)Google Scholar
  37. 37.
    Weiland, C.: Computational Space Flight Mechanics. Springer, Berlin (2010)CrossRefGoogle Scholar
  38. 38.
    Weiland, C.: Aerodynamic Data of Space Vehicles. Springer, Berlin (2014)CrossRefGoogle Scholar
  39. 39.
    Hirschel, E.H., Weiland, C.: Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles. Springer, Berlin and AIAA (Progress in Astronautics and Aeronautics), Reston USA (2009)Google Scholar
  40. 40.
    Hagemann, G., Knab, O.: Private communications. EADS - Astrium Space Transportation (2010)Google Scholar
  41. 41.
    Abgrall, R., Désidéri, J.-A., Glowinski, R., Mallet, M., Périaux, J. (eds.): Hypersonic Flows for Reentry Problems, vol. III. Springer, Berlin (1992)Google Scholar
  42. 42.
    Wegener, P.P., Buzyna, G.: J. Fluid Mech. 37, 325–335 (1969)ADSCrossRefGoogle Scholar
  43. 43.
    Schmidt, E. : Ernst Kraft Wilhem Nusselt (1882 bis 1957). Forschungen für die Wärmetechnik. In: Buchheim, G., Sonnemann, R., (eds.) Lebensbilder von Ingenieurwissenschaftlern. Leibzig (1989)Google Scholar
  44. 44.
    Nusselt, W.: Technische Thermodynamik. de Gruyter Verlag, Berlin (1934)zbMATHGoogle Scholar
  45. 45.
    VDI Wärmeatlas: VDI Gesellschaft Verfahrenstechnik und Chemieingenieurswesen, (Eds.). Springer-Vieweg, Berlin (2013)Google Scholar
  46. 46.
    Désidéri, J.-A., Glowinski, R., Periaux, J. (eds.): Hypersonic Flows for Reentry Problems, vols. I and II. Springer, Berlin (1991)Google Scholar
  47. 47.
    Schroeder, W., Menne, S.: Hypersonic Delta-Wing Flow, Case VII.4. In: Abgrall, R., Désidéri, J.-A., Glowinski, R., Mallet, M., Périaux, J. (eds.) Hypersonic Flows for Reentry Problems, vol. III. Springer, Berlin (1992)Google Scholar
  48. 48.
    Delery, J., Coet, M.-C.: Experiments on Shock/Boundary-Layer Interactions Producd by Two-Dimensional Ramps and Three-Dimensional Obstacles. In: Désidéri, J.-A., Glowinski, R., Périaux, J. (eds.) Hypersonic Flows for Reentry Problems, vol. II. Springer, Berlin (1991)Google Scholar
  49. 49.
    Hottel, H.C.: Bibliographical memoirs of Warren Kendall Lewis. In: National Academy of Sciences, National Academic Press, Washington D.C., 1996Google Scholar
  50. 50.
    Lewis, W.K.: J. Indust. Eng. Chem. 1, 522–533 (1909)CrossRefGoogle Scholar
  51. 51.
    Vad, J., Lajos, T., Schilling, R. (eds.): Modelling Fluid Flow. Springer, Berlin (2004)zbMATHGoogle Scholar
  52. 52.
    Kurzweil, P.: Das Vieweg Einheiten Lexikon. Vieweg-Verlag, Braunschweig (1999)CrossRefGoogle Scholar
  53. 53.
  54. 54.
  55. 55.
  56. 56.
    Schütz, Th. (ed.): Hucho - Aerodynamic des Automobils. Springer-Vieweg, Braunschweig (2013)Google Scholar
  57. 57.
    Hitzel, S.: Private communication. EADS Military Aircraft Systems, Ottobrunn (2002)Google Scholar
  58. 58.
    Prandtl, L.: Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verh. d. III. Intern. Math. Kongress, Heidelberg, Germany (1904). (B.G. Teubner Verlag, Leibzig, 1905, pp. 485–491.)Google Scholar
  59. 59.
    Meier, G.E.A. (ed.): Ludwig Prandtl, ein Führer in der Strömungslehre. Vieweg Verlag, Braunschweig (2000)Google Scholar
  60. 60.
    Rotta, J.C.: Die Aerodynamische Versuchsanstalt in Göttingen, ein Werk Ludwig Prandtls. Verlag Vandenhoeck & Ruprecht, Göttingen (1990)Google Scholar
  61. 61.
    Christen, D.S.: Praxiswissen der chemischen Verfahrenstechnik. Springer, Berlin (2010)CrossRefGoogle Scholar
  62. 62.
    Herwig, H.: Wärmeübertragung A-Z. VDI Buch. Springer, Berlin (2000)CrossRefGoogle Scholar
  63. 63.
    Schlichting, H., Gersten, K.: Grenzschichttheorie, 10th edn. Springer, Berlin (2006)Google Scholar
  64. 64.
    Jischa, M.: Konvektiver Impuls-, Wärme- und Stoffaustausch. Springer Fachwissen, Berlin (1982)Google Scholar
  65. 65.
    Herival, J.: Joseph Fourier: the man and the Physicist. Clarendon Press, Oxford (1975)Google Scholar
  66. 66.
    Nowlan, R.: A chronicle of mathematical people. pdf - fileGoogle Scholar
  67. 67.
    Fourier, J.-B.-J.: Théorie analytique de la chaleur. Firmin Didot et Fils (1822)Google Scholar
  68. 68.
    Struik, D.J.: Joseph Fourier, French Mathematician. Encyclopeadia BritannicaGoogle Scholar
  69. 69.
    Böckh v., P.: Wärmeübertragung Grundlagen und Praxis. Springer, Berlin (2006)Google Scholar
  70. 70.
  71. 71.
    Kassab, A.: Application of Series in Heat Transfer - transient heat conduction (2008). https://excel.ucf.edu/classes/2008/Spring/appsII/chapter_7b_Sp_08.pdf
  72. 72.
    Strouhal, V.: Über eine besondere Art der Tonerregung. Annalen der Physik und Chemie, vol. 5, Leipzig, Germany. (1878), pp. 216–251Google Scholar
  73. 73.
    Költzsch, P.: Fragmente aus der Geschichte der Strömungsakustik. University of Dresden, Germany. https://pub.dega-akustik.de/DAGA_1999-2008/data/articles/00121.pdf
  74. 74.
    Corda, S.: Introduction to Aerospace Engineering with Flight Test Perspective. Wiley, New York (2017)Google Scholar
  75. 75.
  76. 76.
    Billah, K.Y., Scanlan, R.H.: Resonance, Tacoma narrows bridge failure, and undergraduate physics textbooks. Am. J. Phys. 59 (1991)Google Scholar
  77. 77.
  78. 78.
    Nobel Lectures, Physics 1901–1921. Elsevier Publishing Company, Amsterdam (1967). https://www.nobelprize.org/nobel_prizes/physics/laureates/1904/
  79. 79.
    O’Connor, J.J., Robertson, E.F.: John William Strutt (Lord Rayleigh). http://www-groups.dcs.st-and.ac.uk/history/Printonly/Rayleigh.html
  80. 80.
    Lindsay, R.B.: John William Strutt, 3rd Lord Rayleigh. https://www.britannica.com/print/article/492464
  81. 81.
    Görtler, H.: Dimensionsanalyse. Theorie der physikalischen Dimensionen und Anwendungen. Springer, Berlin (1975)CrossRefGoogle Scholar
  82. 82.
    Ahlers, G., Grossmann, S., Lohse, D.: Hochpräzision im Kochtopf. Phys. J., vol. 2, Wiley-VCH, Verlag (2002)Google Scholar
  83. 83.
    Bénard, H.: Les tourbillions cellulaires dans une nappe liquide. Revue Générale des Science, vol. 11, (1900), pp. 1261–1271 and 1309–1328Google Scholar
  84. 84.
    Strutt, J.W.: On the convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 2, 833–844 (1916)Google Scholar
  85. 85.
    Merker, G.P.: Konvektive Wärmeübertragung. Springer, Berlin (1987)Google Scholar
  86. 86.
    Voit, C.: Nekrolog auf Sir George Gabriel Stokes. Sitzungsberichte der mathematisch-physikalischen Klasse der K.B. Akademie der Wissenschaften, München, Band XXXIII (1903)Google Scholar
  87. 87.
  88. 88.
    Krause, E.: Strömungslehre, Gasdynamik und aerodynamisches Laboratorium. Teubner Verlag, Stuttgart (2003)Google Scholar
  89. 89.
    Stokes, G.G.: Trans. Camb. Phil. Soc. 2 (Part II), 8–106 (1851)Google Scholar
  90. 90.
  91. 91.
    Cromer, D., Pruisner, L.: Snow, Rain and the Stokes number. s3.danielcromer.com/resources/SnowRainStokesNo.pdfGoogle Scholar
  92. 92.
  93. 93.
    Dillmann, A.: Future Perspectives of Experimental Aerodynamics. DLR Göttingen. Paper presented at the celebration of E.H. Hirschel’s 80th birthday, DLR Cologne (2014)Google Scholar
  94. 94.
    Adam, H., Steckelmacher, W.: Vacuum Science and Technology, -Pioneers of the 20th Century-. Redhead, P.A. (ed.). AIP Press, Maryland (1994)Google Scholar
  95. 95.
    von Kármán, Th.: ZAMM 3, 395–396 (1923)Google Scholar
  96. 96.
    Hänel, D.: Molekulare Gasdynamik. Springer, Berlin (2004)zbMATHGoogle Scholar
  97. 97.
    Stemmer, C.: Hyperschallströmungen. Vorlesung TU München, Germany. https://www.aer.mw.tum.de/fileadmin/tumwaer/www/pdf/lehre/ hyperschallstroem/skript.pdf
  98. 98.
    Frankovic, B., Pohl, G.: Peter Salcher and Ernst Mach. Proc. Int. Symp, Rijeka, Croatia (2004)Google Scholar
  99. 99.
  100. 100.
    Ackeret, J.: Habilitationsschrift, ETH Zürich (1928)Google Scholar
  101. 101.
    Mach, E., Salcher, P.: Photographische Fixierung der durch Projectile in der Luft eingeleiteten Vorgänge. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Part 2 95, 764–781 (1887)Google Scholar
  102. 102.
    Mach, E.: Über die Abbildung der von Projectilen mitgeführten Luftmasse durch Momentphotographie. Anzeiger der Kaiserlichen Akademie der Wissenschaften 23, 136 (1886)Google Scholar
  103. 103.
    Mach, E., Salcher, P.: Optische Untersuchung der Luftstrahlen. Sitzungsberichte der Akademie der Wissenschaften, XCVIII Band, Wien (1889)Google Scholar
  104. 104.
    Gross, A., Weiland, C.: Numerical Simulation of Separated Cold Gas Nozzle Flows. J. Propul. Power 20(3), 509–519 (2004)Google Scholar
  105. 105.
    O’Connor, J.J., Robertson, E.F.: Josef Stefan. http://www-history.mcs.st-andrews.ac.uk/Biographies/Stefan_Josef.html
  106. 106.
    Jiji, L.M.: Heat Conduction. Springer, Berlin (2009)CrossRefGoogle Scholar
  107. 107.
    Liu, J: Stability of viscoplastic flow. https://www.whoi.edu/fileserver.do?id=283458&pt=10&p=17275
  108. 108.
    Osswald, T.A.: Understanding Polymer Processing. Hanser Verlag, Munich (2011)Google Scholar
  109. 109.
    Baehr, H.D., Stephan, K.: Heat and Mass Transfer. Springer, Berlin (2006)CrossRefGoogle Scholar
  110. 110.
    Kunes, J.: Dimensionless Physical Quantities in Science and Engineering. Elsevier Publishing Company, London (2012)Google Scholar
  111. 111.
    Grachev, A.A., Andreas, E.L., Fairall, Ch.W., Guest, P.S., Persson, P.O.G.: The Critical Richardson Number and Limits of Applicability of Local Similarity Theory in the Stable Boundary Layer. https://arvix.org/ftp/arvix/papers/1202/1202.5066.pdf
  112. 112.
    Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number (1960). https://pdfs.semanticscholar.org/2b0e/17ef8b142cd1100ec608956c75aa5ce24c.pdf
  113. 113.
    Rattner, A., Bohren, J.: Heat and Mass Correlations. https://www.stwing.upenn.edu/~salexa/Documents/Correlations.pdf

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BruckmühlGermany

Personalised recommendations