Wakes and Instabilities of Static and Freely Vibrating Cylinders

  • I. RodríguezEmail author
  • O. Lehmkuhl
  • D. Pastrana
  • J. C. Cajas
  • G. Houzeaux
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 27)


The flow around static and freely vibrating cylinders are of interest in understanding different phenomena encountered in many practical applications.



This work has been partially financially supported by the Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (Ref. TRA2017-88508-R). We also acknowledge Red Española de Surpercomputación (RES) for awarding us access to the MareNostrum IV machine based in Barcelona, Spain (Ref. FI-2017-2-0016) and PRACE for awarding us access to SuperMUC (Project ViValdi Ref. 2017174222). D. Pastrana acknowledges support of the CONACyT-SENER graduate fellowship program to study abroad 278102/439162.


  1. 1.
    Roshko, A.: Perspectives on bluff body aerodynamics. J. Wind. Eng. Ind. Aerodyn. 49(1), 79–100 (1993)CrossRefGoogle Scholar
  2. 2.
    Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28(1), 477–539 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zdravkovich, M.: Flow around circular cylinders. Volume I: Fundamental. J. Fluid Mech. 350(1), 375–378 (1997)Google Scholar
  4. 4.
    Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10(3), 345–356 (1961)CrossRefGoogle Scholar
  5. 5.
    Bearman, P.W.: On vortex shedding from a circular cylinder in the critical Reynolds number regime. J. Fluid Mech. 37, 577–585 (1969)CrossRefGoogle Scholar
  6. 6.
    Achenbach, E., Heinecke, E.: On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6e3 to 5e6. J. Fluid Mech. 109, 239–251 (1981)CrossRefGoogle Scholar
  7. 7.
    Lehmkuhl, O., Rodríguez, I., Borrell, R., Chiva, J., Oliva, A.: Unsteady forces on a circular cylinder at critical Reynolds numbers. Phys. Fluids 26(12), 125110 (2014)CrossRefGoogle Scholar
  8. 8.
    Lienhard, J.: Synopsis of lift, drag and cortex shedding frequency data for rigid circular cylinders. Tech. Rep. Bulletin 300, College of Engineering. Research Division (1966)Google Scholar
  9. 9.
    Shih, W., Wang, C., Coles, D., Roshko, A.: Experiments on flow past rough circular cylinders at large Reynolds numbers. J. Wind. Eng. Ind. Aerodyn. 49, 351–368 (1993)CrossRefGoogle Scholar
  10. 10.
    Achenbach, E.: Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5e6. J. Fluid Mech. 34, 625–639 (1968)CrossRefGoogle Scholar
  11. 11.
    Schewe, G.: On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983)CrossRefGoogle Scholar
  12. 12.
    Rodríguez, I., Lehmkuhl, O., Chiva, J., Borrell, R., Oliva, A.: On the flow past a circular cylinder from critical to super-critical Reynolds numbers: wake topology and vortex shedding. Int. J. Heat Fluid Flow 55, 91–103 (2015)CrossRefGoogle Scholar
  13. 13.
    Lehmkuhl, O., Rodríguez, I., Borrell, R., Oliva, A.: Low-frequency unsteadiness in the vortex formation region of a circular cylinder. Phys. Fluids 25, 085109 (2013)CrossRefGoogle Scholar
  14. 14.
    Aljure, D., Lehmkhul, O., Rodríguez, I., Oliva, A.: Three dimensionality in the wake of the flow around a circular cylinder at Reynolds number 5000. Comput. Fluids 147, 102–118 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Delany, N., Sorensen, N.: Low-speed drag of cylinders of various shapes. Tech. Rep., NACA (1953)Google Scholar
  16. 16.
    Spitzer, R.: Measurements of unsteady pressures and wake fluctuations for flow over a cylinder at supercritical Reynolds number. Ph.D. thesis, California Institute of Technology (1965)Google Scholar
  17. 17.
    Bursnall, W., Loftin, L.J.: Experimental investigation of the pressure distribution about a yawed circular cylinder in the critical Reynolds number range. Tech. rep., NACA (1951)Google Scholar
  18. 18.
    Vaz, G., Mabilat, C., van der Wal, R., Gallagher, P.: Viscous flow computations on smooth cylinders: a detailed numerical study with validation. In: 26th International Conference on Offshore Mechanics and Artic Engineering. OMAE2007, San Diego, California (2007)Google Scholar
  19. 19.
    Wieselsberger, C.: New data on the laws of fluid resistance. Tech. Rep. TN 84, NACA (1921)Google Scholar
  20. 20.
    Fage, A.: Drag of circular cylinders and spheres. Tech. Rep., Aeronautical Research Council (1930)Google Scholar
  21. 21.
    Sarpkaya, T.: Vortex-induced oscillations: a selective review. J. Appl. Mech. 46, 241–258 (1979)CrossRefGoogle Scholar
  22. 22.
    Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)CrossRefGoogle Scholar
  23. 23.
    Williamson, C.H.K., Govardhan, R.: A brief review of recent results in vortex-induced vibrations. J. Wind. Eng. Ind. Aerodyn. 96, 713–735 (2008)CrossRefGoogle Scholar
  24. 24.
    Bearman, P.W.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5–6), 648–658 (2011)CrossRefGoogle Scholar
  25. 25.
    Vázquez, M., Houzeaux, G., Koric, S., Artigues, A., Aguado-Sierra, J., Arís, R., Mira, D., Calmet, H., Cucchietti, F., Owen, H., Taha, A., Burness, E.D., Cela, J.M., Valero, M.: Alya: multiphysics engineering simulation towards exascale. J. Comput. Sci. 14, 15–27 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lehmkuhl, O., Houzeaux, G., Owen, H., Chrysokentis, G., Rodriguez, I.: A low-dissipation finite element scheme for scale resolving simulations of turbulent flows. J. Comput. Phys. 390, 51–65 (2019)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cajas, J., Houzeaux, G., Vázquez, M., García, M., Casoni, E., Calmet, H., Artigues, A., Borrell, R., Lehmkuhl, O., Pastrana, D., Yáñez, D., Pons, R., Martorell, J.: Fluid-structure interaction based on HPC multicode coupling. SIAM J. Sci. Comput. 40(6), C677–C703 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pastrana, D., Cajas, J.C., Lehmkuhl, O., Rodríguez, I., Houzeaux, G.: Large-eddy simulations of the vortex-induced vibration of a low mass ratio two-degree-of-freedom circular cylinder at subcritical Reynolds numbers. Comput. Fluids 173, 118–132 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jauvtis, N., Williamson, C.H.K.: The effect of two degrees of freedom on vortex-induced vibration at low mass and damping. J. Fluid Mech. 509, 23–62 (2004)CrossRefGoogle Scholar
  30. 30.
    Gsell, S., Bourguet, R., Braza, M.: Two-degree-of-freedom vortex-induced vibrations of a circular cylinder at Re=3900. J. Fluids Struct. 67, 156–172 (2016)CrossRefGoogle Scholar
  31. 31.
    Williamson, C.H.K., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2(4), 355–381 (1988)CrossRefGoogle Scholar
  32. 32.
    Williamson, C., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Honji, H.: Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 107, 509–520 (1981)CrossRefGoogle Scholar
  34. 34.
    Sarpkaya, T.: Experiments on the stability of sinusoidal flow over a circular cylinder. J. Fluid Mech. 457, 157–180 (2002)CrossRefGoogle Scholar
  35. 35.
    Aljure, D.E., Rodríguez, I., Lehmkuhl, O., Pérez-Segarra, C.D., Oliva, A.: Influence of rotation on the flow over a cylinder at Re = 5000. Int. J. Heat Fluid Flow 55, 76–90 (2015)CrossRefGoogle Scholar
  36. 36.
    D’Adamo, J., Godoy-Diana, R., Wesfreid, J.E.: Centrifugal instability of Stokes layers in crossflow: the case of a forced cylinder wake. Proc. R. Soc. Lond. A Math. Phys. Sci. 471(2178), 20150011 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • I. Rodríguez
    • 1
    Email author
  • O. Lehmkuhl
    • 2
  • D. Pastrana
    • 2
  • J. C. Cajas
    • 3
  • G. Houzeaux
    • 2
  1. 1.Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Barcelona Supercomputing CenterBarcelonaSpain
  3. 3.Universidad Nacional Autónoma de MéxicoMéridaMexico

Personalised recommendations