Advertisement

Implicit Wall-Layer Modelling in Turbulent Pipe Flow

  • R. Vicente Cruz
  • E. LamballaisEmail author
  • R. Perrin
Conference paper
  • 67 Downloads
Part of the ERCOFTAC Series book series (ERCO, volume 27)

Abstract

In the context of large eddy simulations (LES) of wall-bounded turbulence, the explicit calculation of all the energy-containing near-wall eddies is a key point.

Notes

Acknowledgements

This work was Granted access to the HPC resources of TGCC/CINES/IDRIS under the allocation A0012A07624/A0032A07624/A0052A07624 made by GENCI.

References

  1. 1.
    Sagaut, P.: Large Eddy Simulation of Incompressible Flow: An Introduction, 2nd edn. Springer (2005)Google Scholar
  2. 2.
    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Ann. Rev. Fluid Mech. 34, 349–374 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dairay, T., Lamballais, E., Benhamadouche, S.: Mesh node distribution in terms of wall distance for large-eddy simulation of wall-bounded flows. Flow Turbul. Combust. 100(3), 617–626 (2018)CrossRefGoogle Scholar
  4. 4.
    El Khoury, G.K., Schlatter, P., Noorani, A., Fischer, P.F., Brethouwer, G., Johansson, A.V.: Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 91(3), 475–495 (2013)Google Scholar
  5. 5.
    Lamballais, E., Dairay, T., Laizet, S., Vassilicos, C.: Implicit/explicit spectral viscosity and large-scale SGS effects. In: Proceedings of the DLES-11, (Pisa, Italy) (2017)Google Scholar
  6. 6.
    Dairay, T., Lamballais, E., Laizet, S., Vassilicos, C.: Numerical dissipation vs. subgrid-scale modelling for large eddy simulation. J. Comput. Phys. 337, 252–274 (2017)Google Scholar
  7. 7.
    Lamballais, E., Fortuné, V., Laizet, S.: Straightforward high-order numerical dissipation via the viscous term for direct and large eddy simulation. J. Comput. Phys. 230, 3270–3275 (2011)CrossRefGoogle Scholar
  8. 8.
    Dairay, T., Fortuné, V., Lamballais, E., Brizzi, L.: LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Int. J. Heat Fluid Flow 50, 177–187 (2014)CrossRefGoogle Scholar
  9. 9.
    Gautier, R., Laizet, S., Lamballais, E.: A DNS study of jet control with microjets using an immersed boundary method. Int. J. Comput. Fluid Dyn. 28(6–10), 393–410 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Incompressible Turbulence and Control Group, Pprime Institute, CNRS-Univ-Poitiers-ISAE/ENSMAPoitiersFrance
  2. 2.Department of Mechanical Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha CampusSrirachaThailand

Personalised recommendations