Advertisement

DNS of Unequal Size Droplets Collision Using a Moving-Mesh/Level-Set Method

  • A. Amani
  • N. Balcázar
  • E. Gutiérrez
  • A. OlivaEmail author
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 27)

Abstract

The dynamics of binary droplets collision is of huge importance in different fields, from multiphase reactors (Dudukovic et al in Chem Eng Sci 54:1975–1995, 1999 [11]), raindrop formation, ink-jet printing, spray combustion, emulsion stability, turbine blade cooling, spray coating (Ashgriz and Poo in J Fluid Mech 221:183–204, 1990 [5]), and to drug delivery. Due to the complexity of the nature of droplets collision, this topic is one of the most challenging areas in the field of fluid dynamics.

Notes

Acknowledgements

We acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ENE2017-88697-R). A. Amani acknowledges the financial support of (AGAUR) of Generalitat de Catalunya research scholarship (2016 FI_B 01059). N. Balcázar acknowledges the Programa Torres Quevedo MINECO (PTQ-14-07186).

References

  1. 1.
    Amani, A., Balcázar, N., Naseri, A., Oliva, A.: A study on binary collision of GNF droplets using a conservative level-set method. In: 7th European Conference on Computational Fluid Dynamics (ECFD 7), June 2018, Glasgow (2018)Google Scholar
  2. 2.
    Amani, A., Balcázar, N., Castro, J., Oliva, A.: Numerical study of droplet deformation in shear flow using a conservative level-set. Chem. Eng. Sci. 207, 153–177 (2019). https://doi.org/10.1016/j.ces.2019.06.014
  3. 3.
    Amani, A., Balcázar, N., Gutiérrez, E., Oliva, A.: Numerical study of binary droplets collision in the main collision regimes. Chem. Eng. J. 370, 477–498 (2019). https://doi.org/10.1016/j.cej.2019.03.188
  4. 4.
    Anilkumar, A.V., Lee, C.P., Wang, T.G.: Surface-tension-induced mixing following coalescence of initially stationary drops. Phys. Fluids A 3, 2587–2591 (1991)CrossRefGoogle Scholar
  5. 5.
    Ashgriz, N., Poo, J.Y.: Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183–204 (1990)CrossRefGoogle Scholar
  6. 6.
    Balcázar, N., Jofre, L., Lehmkuhl, O., Castro, J., Rigola, J.: A finite-volume/level-set method for simulating two-phase flows on unstructured grids. Int. J. Multiph. Flow 64, 55–72 (2014)Google Scholar
  7. 7.
    Balcázar, N., Lehmkuhl, O., Rigola, J., Oliva, A.: A multiple marker level-set method for simulation of deformable fluid particles. Int. J. Multiph. Flow 74, 125–142 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brazier-Smith, P.R., Jennings, S.G., Latham, J.: The interaction of falling water drops: coalescence. Proc. R. Soc. A: Math. Phys. Eng. Sci. 1566, 393–408 (1972)Google Scholar
  9. 9.
    Chorin, A.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745 (1968)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Doumas, A., Van Den Broek, P., Affolter, M., Monod, M.: Characterization of the prolyldipeptidyl peptidase gene (dppIV) from the Koji mold As-pergillusoryzae. Appl. Environ. Microbiol. 64, 4809–4815 (1998)CrossRefGoogle Scholar
  11. 11.
    Dudukovic, M.P., Larachi, F., Mills, P.L.: Multi-phase reactors-revisited. Chem. Eng. Sci. 54, 1975–1995 (1999)CrossRefGoogle Scholar
  12. 12.
    Gutiérrez, E., Favre, F., Balcázar, N., Amani, A., Rigola, J.: Numerical approach to study bubbles and drops evolving through complex geometries by using a level set—moving mesh—immersed boundary method. Chem. Eng. J. 349, 662–682 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Amani
    • 1
  • N. Balcázar
    • 2
  • E. Gutiérrez
    • 1
  • A. Oliva
    • 1
    Email author
  1. 1.Heat and Mass Transfer Technological Center (CTTC)Polytechnic University of Catalonia (UPC)Terrassa, BarcelonaSpain
  2. 2.TermoFluids S.L.Terrassa, BarcelonaSpain

Personalised recommendations