Advertisement

The Influence of Feedstock Powder

  • Aleksandra NasticEmail author
  • Daniel MacDonald
  • Bertrand Jodoin
Chapter
  • 64 Downloads
Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

Additive manufacturing is based on the concept of freeform structures built up using a consecutive layer-by-layer material deposition approach, enabling the production of complex and functional components in a single manufacturing step. It allows the creation of high complexity components with minimal time and cost, as opposed to traditional subtractive manufacturing techniques. Current metallic AM technologies include selective laser melting, directed energy deposition, laser engineered net shaping, and plasma spraying. Although used commercially, these processes all suffer from the detrimental effects of high temperature processing, generally resulting in component distortion, uncontrolled phase transformations, undesirable residual stresses, and non-uniform mechanical properties. The cold spray process has recently gained attention in the additive manufacturing field as it may mitigate the undesirable thermal effects of current freeform manufacturing techniques, as well as drastically increase the available deposition rates. In cold spray, feedstock particles are injected in a supersonic gas flow and accelerated to velocities as high as 1200 m/s prior to impact. This high impact velocity is responsible for the material consolidation in the cold spray process. The particle impact velocity is dictated by the particle/gas flow interaction, which can be altered through the modification of the gas stagnation properties and spray nozzle geometry. While the effect of the gas/particle interaction is typically the focus of most cold spray research, it has become apparent that the size, shape, microstructure and quality of the feedstock powder have a large influence on the process efficiency. Hence, the effect of powder properties needs to be properly explored, understood, and considered in the powder selection process. This chapter aims to provide a complete reference on the effect of the feedstock particles on deposition quality in an additive manufacturing framework. It should provide the reader with a comprehensive resource for powder selection, pre-treatment, and storage. The effect of powder morphology will be presented. A descriptive analysis of the manufacturing processes used to produce particles will be included. The broad effect of powder size and shape on the particle velocity and resulting deposition will be discussed. Furthermore, the influence of the powder grain structure on particle distortion, dislocation generation, and recrystallization will be described on the basis of high strain rate deformation processes. Beyond the expected properties of the feedstock materials, it is also apparent that the “quality” of the powder is of great importance. The powder quality is thoroughly described by oxygen content and oxide layer type and thickness. This quality has been shown to greatly influence the process efficiency for some materials, and best practices for handling and storage of the powders is discussed. Finally, the status of powder recycling methods in cold spray will be considered along with the advantages of reprocessing in the field of additive manufacturing.

Keywords

Feedstock powder Grain size Oxide layer Additive manufacturing Powder morphology 

References

  1. 1.
    Gibson, I., Rosen, D., & Strucker, B. (2015). Additive manufacturing technologies. New York: Springer.CrossRefGoogle Scholar
  2. 2.
    MacDonald, D., Nastic, A., & Jodoin, B. (2018). Understanding adhesion. In Cold-spray coatings recent trends and future perspectives (pp. 421–450). Berlin: Springer.Google Scholar
  3. 3.
    Van Steenkiste, T. H., et al. (1999). Kinetic spray coatings. Surface and Coatings Technology, 111(1), 62–71.CrossRefGoogle Scholar
  4. 4.
    Schmidt, T., Gärtner, F., Assadi, H., & Kreye, H. (2006). Development of a generalized parameter window for cold spray deposition. Acta Materialia, 54(3), 729–742.CrossRefGoogle Scholar
  5. 5.
    Stoltenhoff, T., Kreye, H., & Richter, H. J. (2002). An analysis of the cold spray process and its coatings. Journal of Thermal Spray Technology, 11(4), 542–550.CrossRefGoogle Scholar
  6. 6.
    Dykhuizen, R. C., & Smith, M. F. (1998). Gas dynamic principles of cold spray. Journal of Thermal Spray Technology, 7(2), 205–212.CrossRefGoogle Scholar
  7. 7.
    Kosarev, V. F., Klinkov, S. V., Alkhimov, A. P., & Papyrin, A. N. (2003). On some aspects of gas dynamics of the cold spray process. Journal of Thermal Spray Technology, 12(2), 265–281.CrossRefGoogle Scholar
  8. 8.
    Grujicic, M., Zhao, C., Tong, C., DeRosset, W., & Helfritch, D. (2004). Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Materials Science and Engineering: A, 368(1–2), 222–230.CrossRefGoogle Scholar
  9. 9.
    Klinkov, S. V., Kosarev, V. F., & Rein, M. (2005). Cold spray deposition: Significance of particle impact phenomena. Aerospace Science and Technology, 9(7), 582–591.CrossRefGoogle Scholar
  10. 10.
    Li, C.-J., Li, W.-Y., & Liao, H. (2006). Examination of the critical velocity for deposition of particles in cold spraying. Journal of Thermal Spray Technology, 15(2), 212–222.CrossRefGoogle Scholar
  11. 11.
    Hassani-Gangaraj, M., Veysset, D., Nelson, K. A., & Schuh, C. A. (2018). In-situ observations of single micro-particle impact bonding. Scripta Materialia, 145, 9–13.CrossRefGoogle Scholar
  12. 12.
    Gilmore, D. L., Dykhuizen, R. C., Neiser, R. A., Smith, M. F., & Roemer, T. J. (1999). Particle velocity and deposition efficiency in the cold spray process. Journal of Thermal Spray Technology, 8(4), 576–582.CrossRefGoogle Scholar
  13. 13.
    Assadi, H., Gärtner, F., Stoltenhoff, T., & Kreye, H. (2003). Bonding mechanism in cold gas spraying. Acta Materialia, 51(15), 4379–4394.CrossRefGoogle Scholar
  14. 14.
    Gärtner, F., Stoltenhoff, T., Schmidt, T., & Kreye, H. (2006). The cold spray process and its potential for industrial applications. Journal of Thermal Spray Technology, 15(2), 223–232.CrossRefGoogle Scholar
  15. 15.
    Li, C. J., et al. (2009). Influence of spray materials and their surface oxidation on the critical velocity in cold spraying. Journal of Thermal Spray Technology, 19(1–2), 342–347.Google Scholar
  16. 16.
    Villafuerte, J. (2015). Modern cold spray. Ontario: Springer.CrossRefGoogle Scholar
  17. 17.
    Assadi, H., Kreye, H., Gärtner, F., & Klassen, T. (2016). Cold spraying—A materials perspective. Acta Materialia, 116, 382–407.CrossRefGoogle Scholar
  18. 18.
    Jenkins, R., Yin, S., Aldwell, B., Meyer, M., & Lupoi, R. (2018). New insights into the in-process densification mechanism of cold spray Al coatings: Low deposition efficiency induced densification. Journal of Materials Science and Technology, 35(3), 427–431.CrossRefGoogle Scholar
  19. 19.
    Wong, W., et al. (2013). Effect of particle morphology and size distribution on cold-sprayed pure titanium coatings. Journal of Thermal Spray Technology, 22(7), 1140–1153.CrossRefGoogle Scholar
  20. 20.
    Assadi, H., et al. (2011). On parameter selection in cold spraying. Journal of Thermal Spray Technology, 20(6), 1161–1176.CrossRefGoogle Scholar
  21. 21.
    Bastwros, M., et al. (2014). Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites Part B: Engineering, 60, 111–118.CrossRefGoogle Scholar
  22. 22.
    Sun, Y. Y., et al. (2015). Manipulation and characterization of a novel titanium powder precursor for additive manufacturing applications. JOM Journal of the Minerals Metals and Materials Society, 67(3), 564–572.CrossRefGoogle Scholar
  23. 23.
    MacDonald, D., Fernández, R., Delloro, F., & Jodoin, B. (2017). Cold spraying of armstrong process titanium powder for additive manufacturing. Journal of Thermal Spray Technology, 26(4), 598–609.CrossRefGoogle Scholar
  24. 24.
    Chen, C., et al. (2018). Cold spraying of thermally softened Ni-coated FeSiAl composite powder: Microstructure characterization, tribological performance and magnetic property. Materials and Design, 160, 270–283.CrossRefGoogle Scholar
  25. 25.
    Sundberg, K., Champagne, V., McNally, B., Helfritch, D., & Sisson, R. (2015). Effectiveness of nanomaterial copper cold spray surfaces on inactivation of influenza A virus. Journal of Biotechnology & Biomaterials, 5(4), 205.Google Scholar
  26. 26.
    Gao, P.-H., Li, C.-J., Yang, G.-J., Li, Y.-G., & Li, C.-X. (2008). Influence of substrate hardness on deposition behavior of single porous WC-12Co particle in cold spraying. Surface and Coatings Technology, 203(3–4), 384–390.CrossRefGoogle Scholar
  27. 27.
    Hall, A. C., Brewer, L. N., & Roemer, T. J. (2008). Preparation of aluminum coatings containing homogenous nanocrystalline microstructures using the cold spray process. Journal of Thermal Spray Technology, 17(3), 352–359.CrossRefGoogle Scholar
  28. 28.
    Zhang, Q., et al. (2008). Formation of NiAl intermetallic compound by cold spraying of ball-milled Ni/Al alloy powder through postannealing treatment. Journal of Thermal Spray Technology, 17(5–6), 715–720.CrossRefGoogle Scholar
  29. 29.
    Tria, S., et al. (2011). Deposition and characterization of cold sprayed nanocrystalline NiTi. Powder Technology, 210(2), 181–188.CrossRefGoogle Scholar
  30. 30.
    Jeandin, M., Rolland, G., Descurninges, L. L., & Berger, M. H. (2014). Which powders for cold spray? Surface Engineering, 30(5), 291–298.CrossRefGoogle Scholar
  31. 31.
    Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., & Srivastava, V. (2004). Atomization process for metal powder. Materials Science and Engineering: A, 383(1), 1–6.CrossRefGoogle Scholar
  32. 32.
    Ünal, A. (1989). Liquid break-up in gas atomization of fine aluminum powders. Metallurgical Transactions B, 20(1), 61–69.CrossRefGoogle Scholar
  33. 33.
    Yule, A., & Dunkley, J. (1994). Atomization of melts for powder production and spray deposition. Michigan: Clarendon Press.Google Scholar
  34. 34.
    Datta, B. K. (2014). Powder metallurgy: An advanced technique of processing engineering materials. New Delhi: PHI Learning.Google Scholar
  35. 35.
    Sun, P., Fang, Z. Z., Zhang, Y., & Xia, Y. (2017). Review of the methods for production of spherical Ti and Ti alloy powder. JOM Journal of the Minerals Metals and Materials Society, 69(10), 1853–1860.CrossRefGoogle Scholar
  36. 36.
    Macdonald, D., Rahmati, S., & Jodoin, B. (2018). An economical approach to cold gas dynamic spraying using in-line nitrogen-helium blending. In International Thermal Spray Conference, Orlando, Florida, May 7–10, 2018.Google Scholar
  37. 37.
    Fauchais, P., Montavon, G., & Bertrand, G. (2010). From powders to thermally sprayed coatings. Journal of Thermal Spray Technology, 19(1–2), 56–80.CrossRefGoogle Scholar
  38. 38.
    Duflos, F., & Stohr, J. F. (1982). Comparison of the quench rates attained in gas-atomized powders and melt-spun ribbons of Co- and Ni-base superalloys: Influence on resulting microstructures. Journal Materials Science, 17(12), 3641–3652.CrossRefGoogle Scholar
  39. 39.
    Peissker, E. (1991). Production and handling of electrolytic powders. Metal Powder Report, 46(4), 20–25.CrossRefGoogle Scholar
  40. 40.
    Araci, K., Mangabhai, D., & Akhtar, K. (2015). Production of titanium by the Armstrong Process. In Titanium powder metallurgy. Amsterdam: Elsevier.Google Scholar
  41. 41.
    Fernandez, R., & Jodoin, B. (2017). Effect of particle morphology on cold spray deposition of chromium carbide-nickel chromium cermet powders. Journal of Thermal Spray Technology, 26(6), 1356–1380.CrossRefGoogle Scholar
  42. 42.
    Ghelichi, R., et al. (2014). Fatigue strength of Al alloy cold sprayed with nanocrystalline powders. International Journal of Fatigue, 65, 51–57.CrossRefGoogle Scholar
  43. 43.
    Ajdelsztajn, L., Zúñiga, A., Jodoin, B., & Lavernia, E. J. (2006). Cold-spray processing of a nanocrystalline Al-Cu-Mg-Fe-Ni alloy with Sc. Journal of Thermal Spray Technology, 15(2), 184–190.CrossRefGoogle Scholar
  44. 44.
    Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., & Schuh, C. A. (2018). Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Materialia, 158, 430–439.CrossRefGoogle Scholar
  45. 45.
    Hassani-Gangaraj, M., Veysset, D., Champagne, V. K., Nelson, K. A., & Schuh, C. A. (2019). Response to Comment on “Adiabatic shear instability is not necessary for adhesion in cold spray”. Scripta Materialia, 162, 515–519.CrossRefGoogle Scholar
  46. 46.
    Assadi, H., Gärtner, F., Klassen, T., & Kreye, H. (2019). Comment on “Adiabatic shear instability is not necessary for adhesion in cold spray”. Scripta Materialia, 162, 512–514.CrossRefGoogle Scholar
  47. 47.
    Nastic, A., & Jodoin, B. (2018). Evaluation of heat transfer transport coefficient for cold spray through computational fluid dynamics and particle in-flight temperature measurement using a high-speed IR camera. Journal of Thermal Spray Technology, 27(8), 1491–1517.CrossRefGoogle Scholar
  48. 48.
    Schmidt, T., Gaertner, F., & Kreye, H. (2006). New developments in cold spray based on higher gas and particle temperatures. Journal of Thermal Spray Technology, 15(4), 488–494.CrossRefGoogle Scholar
  49. 49.
    Sova, A., Grigoriev, S., Kochetkova, A., & Smurov, I. (2013). Influence of powder injection point position on efficiency of powder preheating in cold spray: Numerical study. Surface and Coatings Technology, 1–6.Google Scholar
  50. 50.
    Grujicic, M., Zhao, C., DeRosset, W., & Helfritch, D. (2004). Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Materials and Design, 25(8), 681–688.CrossRefGoogle Scholar
  51. 51.
    Jodoin, B., et al. (2006). Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings. Surface and Coatings Technology, 201(6), 3422–3429.CrossRefGoogle Scholar
  52. 52.
    Munagala, V. N. V., Akinyi, V., Vo, P., & Chromik, R. R. (2018). Influence of powder morphology and microstructure on the cold spray and mechanical properties of Ti6Al4V coatings. Journal of Thermal Spray Technology, 27(5), 827–842.CrossRefGoogle Scholar
  53. 53.
    Luo, X. T., Li, Y. J., & Li, C. J. (2016). A comparison of cold spray deposition behavior between gas atomized and dendritic porous electrolytic Ni powders under the same spray conditions. Materials Letters, 163, 58–60.CrossRefGoogle Scholar
  54. 54.
    Ko, K. H., Choi, J. O., & Lee, H. (2015). Characteristics of cold sprayed dendritic Cu coatings. Surface Engineering, 32(9), 650–654.CrossRefGoogle Scholar
  55. 55.
    Fukanuma, H., Ohno, N., Sun, B., & Huang, R. (2006). In-flight particle velocity measurements with DPV-2000 in cold spray. Surface and Coatings Technology, 201(5), 1935–1941.CrossRefGoogle Scholar
  56. 56.
    Yin, S., He, P., Liao, H., & Wang, X. (2014). Deposition features of Ti coating using irregular powders in cold spray. Journal of Thermal Spray Technology, 23(6), 984–990.CrossRefGoogle Scholar
  57. 57.
    MacDonald, D., Leblanc-Robert, S., Fernández, R., Farjam, A., & Jodoin, B. (2016). Effect of nozzle material on downstream lateral injection cold spray performance. Journal of Thermal Spray Technology, 25(6), 1149–1157.CrossRefGoogle Scholar
  58. 58.
    Bhattiprolu, V. S., Johnson, K. W., Ozdemir, O. C., & Crawford, G. A. (2018). Influence of feedstock powder and cold spray processing parameters on microstructure and mechanical properties of Ti-6Al-4V cold spray depositions. Surface and Coatings Technology, 335, 1–12.CrossRefGoogle Scholar
  59. 59.
    Birt, A. M., Champagne, V. K., Sisson, R. D., & Apelian, D. (2015). Microstructural analysis of Ti–6Al–4V powder for cold gas dynamic spray applications. Advanced Powder Technology, 26(5), 1335–1347.CrossRefGoogle Scholar
  60. 60.
    Jones, H. (1984). Microstructure of rapidly solidified materials. Materials Science and Engineering, 65(1), 145–156.CrossRefGoogle Scholar
  61. 61.
    Sabard, A., de Villiers Lovelock, H. L., & Hussain, T. (2018). Microstructural evolution in solution heat treatment of gas-atomized Al alloy (7075) powder for cold spray. Journal of Thermal Spray Technology, 27(1–2), 145–158.CrossRefGoogle Scholar
  62. 62.
    Kong, C. J., Brown, P. D., Harris, S. J., & McCartney, D. G. (2007). Analysis of microstructure formation in gas-atomised Al–12 wt.% Sn–1 wt.% Cu alloy powder. Materials Science and Engineering: A, 454–455, 252–259.CrossRefGoogle Scholar
  63. 63.
    Wang, J., Yang, H., Ruan, J., Wang, Y., & Ji, S. (2019). Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering. Journal of Materials Research, 1–11.Google Scholar
  64. 64.
    Wang, F., Xiong, B., Zhang, Y., Liu, H., & He, X. (2009). Microstructural development of spray-deposited Al–Zn–Mg–Cu alloy during subsequent processing. Journal of Alloys and Compounds, 477(1–2), 616–621.CrossRefGoogle Scholar
  65. 65.
    Annavarapu, S., & Doherty, R. D. (1993). Evolution of microstructure in spray casting. International Journal of Powder Metallurgy (1986), 29(4), 331–343.Google Scholar
  66. 66.
    Rokni, M. R., Widener, C. A., Champagne, V. K., & Crawford, G. A. (2015). Microstructure and mechanical properties of cold sprayed 7075 deposition during non-isothermal annealing. Surface and Coatings Technology, 276, 305–315.CrossRefGoogle Scholar
  67. 67.
    Ajdelsztajn, L., Jodoin, B., & Schoenung, J. M. (2006). Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying. Surface and Coatings Technology, 201(3–4), 1166–1172.CrossRefGoogle Scholar
  68. 68.
    Ajdelsztajn, L., Zúñiga, A., Jodoin, B., & Lavernia, E. J. (2006). Cold gas dynamic spraying of a high temperature Al alloy. Surface and Coatings Technology, 201(6), 2109–2116.CrossRefGoogle Scholar
  69. 69.
    Bérubé, G., et al. (2012). Phase stability of Al-5Fe-V-Si coatings produced by cold gas dynamic spray process using rapidly solidified feedstock materials. Journal of Thermal Spray Technology, 21(2), 240–254.CrossRefGoogle Scholar
  70. 70.
    Trivedi, R., Jin, F., & Anderson, I. E. (2003). Dynamical evolution of microstructure in finely atomized droplets of Al-Si alloys. Acta Materialia, 51(2), 289–300.CrossRefGoogle Scholar
  71. 71.
    Zhang, Y. Y., & Zhang, J. S. (2011). Recrystallization in the particles interfacial region of the cold-sprayed aluminum coating: Strain-induced boundary migration. Materials Letters, 65(12), 1856–1858.CrossRefGoogle Scholar
  72. 72.
    Zambon, A., Badan, B., Norman, A. F., Greer, A. L., & Ramous, E. (1997). Development of solidification microstructures in atomized Fe-Ni alloy droplets. Materials Science and Engineering: A, 226–228, 119–123.CrossRefGoogle Scholar
  73. 73.
    Kalay, Y. E., Chumbley, L. S., Anderson, I. E., & Napolitano, R. E. (2007). Characterization of hypereutectic Al-Si powders solidified under far-from equilibrium conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38(7), 1452–1457.CrossRefGoogle Scholar
  74. 74.
    Rokni, M. R., Widener, C. A., Crawford, G. A., & West, M. K. (2015). An investigation into microstructure and mechanical properties of cold sprayed 7075 Al deposition. Materials Science and Engineering: A, 625, 19–27.CrossRefGoogle Scholar
  75. 75.
    Hariprasad, S., Sastry, S. M. L., & Jerina, K. L. (1996). Undercooling and supersaturation of alloying elements in rapidly solidified Al-8.5% Fe-1.2% V-1.7% Si alloy. Journal of Materials Science, 31(4), 921–925.CrossRefGoogle Scholar
  76. 76.
    Rokni, M. R., Widener, C. A., & Crawford, G. A. (2014). Microstructural evolution of 7075 Al gas atomized powder and high-pressure cold sprayed deposition. Surface and Coatings Technology, 251, 254–263.CrossRefGoogle Scholar
  77. 77.
    Kestenbach, H. J., & Meyers, M. A. (1976). The effect of grain size on the shock-loading response of 304-type stainless steel. Metallurgical Transactions A, 7(12), 1943–1950.CrossRefGoogle Scholar
  78. 78.
    Sevsek, S., et al. (2019). Strain-rate-dependent deformation behavior and mechanical properties of a multi-phase medium-manganese steel. Metals (Basel), 9(3), 344.CrossRefGoogle Scholar
  79. 79.
    Holian, B. L., Hammerberg, J. E., & Lomdahl, P. S. (1998). The birth of dislocations in shock waves and high-speed friction. Journal of Computer-Aided Materials Design, 5(2/3), 207–224.CrossRefGoogle Scholar
  80. 80.
    Borchers, C., Gärtner, F., Stoltenhoff, T., & Kreye, H. (2004). Microstructural bonding features of cold sprayed face centered cubic metals. Journal of Applied Physics, 96(8), 4288–4292.CrossRefGoogle Scholar
  81. 81.
    Bhattiprolu, V. S., Johnson, K. W., & Crawford, G. A. (2019). Influence of powder microstructure on the microstructural evolution of as-sprayed and heat treated cold-sprayed Ti-6Al-4V coatings. Journal of Thermal Spray Technology, 28(1–2), 174–188.CrossRefGoogle Scholar
  82. 82.
    Zou, Y., et al. (2009). Dynamic recrystallization in the particle/particle interfacial region of cold-sprayed nickel coating: Electron backscatter diffraction characterization. Scripta Materialia, 61(9), 899–902.CrossRefGoogle Scholar
  83. 83.
    Humphreys, F. J., & Hatherly, M. (2004). Recrystallization and related annealing phenomena. Amsterdam: Elsevier. Google Scholar
  84. 84.
    Rokni, M. R., Nutt, S. R., Widener, C. A., Crawford, G. A., & Champagne, V. K. (2018) Structure–properties relations in high-pressure cold-sprayed deposits. In Cold-spray coatings (pp. 143–192). Cham: Springer.Google Scholar
  85. 85.
    Bae, G., Kang, K., Kim, J.-J., & Lee, C. (2010). Nanostructure formation and its effects on the mechanical properties of kinetic sprayed titanium coating. Materials Science and Engineering: A, 527(23), 6313–6319.CrossRefGoogle Scholar
  86. 86.
    Chen, M, et al. (2003). Deformation twinning in nanocrystalline aluminum. Science (80-), 300(5623), 1275–1277.Google Scholar
  87. 87.
    Nabarro, F. R. N., & Duesbery , M. S. (2007). Dislocations in solids (Vol. 13). North Holland: Elsevier.Google Scholar
  88. 88.
    Zerilli, F. J., Armstrong, R. W. (1997). Dislocation mechanics based analysis of material dynamics behavior: Enhanced ductility, deformation twinning, shock deformation, shear instability, dynamic recovery. Le Journal de Physique IV, 07(C3), C3-637–C3-642.Google Scholar
  89. 89.
    Meyers, M. A., et al. (2003). Laser-induced shock compression of monocrystalline copper: Characterization and analysis. Acta Materialia, 51(5), 1211–1228.CrossRefGoogle Scholar
  90. 90.
    Schmidt, C. G., Caligiuri, R. D., Giovanola, J. H., & Erlich, D. C. (1991). Effect of grain size on high strain rate deformation of copper. Metallurgical Transactions A, 22(10), 2349–2357.CrossRefGoogle Scholar
  91. 91.
    Lasalmonie, A., & Strudel, J. L. (1986). Influence of grain size on the mechanical behaviour of some high strength materials. Journal Materials Science, 21(6), 1837–1852.CrossRefGoogle Scholar
  92. 92.
    Rohatgi, A., Vecchio, K. S., & Gray, G. T., III. (2001). A metallographic and quantitative analysis of the influence of stacking fault energy on shock-hardening in Cu and Cu–Al alloys. Acta Materialia, 49(3), 427–438.CrossRefGoogle Scholar
  93. 93.
    Millett, J. C. F., Meziere, Y. J. E., & Bourne, N. K. (2007). Shear stress measurement in nickel and nickel–60 wt% cobalt during one-dimensional shock loading. Journal Materials Science, 42(15), 5941–5948.CrossRefGoogle Scholar
  94. 94.
    Millett, J. C. F., Bourne, N. K., & Gray, G. T. (2008). The behavior of Ni, Ni-60Co, and Ni3Al during one-dimensional shock loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 39(2), 322–334.CrossRefGoogle Scholar
  95. 95.
    Sabard, A., & Hussain, T. (2018). Bonding mechanisms in cold spray deposition of gas atomised and solution heat-treated Al 6061 powder by EBSD. Cornell University.Google Scholar
  96. 96.
    Henao, J., & Sharma, M. M. (2018). Characterization, deposition mechanisms, and modeling of metallic glass powders for cold spray. In Cold-spray coatings (pp. 251–272). Cham: Springer.Google Scholar
  97. 97.
    Legoux, J. G., Irissou, E., & Moreau, C. (2007). Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. Journal of Thermal Spray Technology, 16(5–6), 619–626.CrossRefGoogle Scholar
  98. 98.
    Fressengeas, C., & Molinari, A. (1987). Instability and localization of plastic flow in shear at high strain rates. Journal of the Mechanics and Physics of Solids, 35(2), 185–211.zbMATHCrossRefGoogle Scholar
  99. 99.
    Peirce, D., Asaro, R. J., & Needleman, A. (1983). Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica, 31(12), 1951–1976.CrossRefGoogle Scholar
  100. 100.
    Guha, R. D., Sharma, A. J., Diwan, P., & Khanikar, P. (2017). Effect of grain orientation on high strain-rate plastic deformation. Procedia Engineering, 173, 1048–1055.CrossRefGoogle Scholar
  101. 101.
    Carrington, M. J., et al. (2019). Microstructural characterisation of Tristelle 5183 (Fe-21%Cr-10%Ni-7.5%Nb-5%Si-2%C in wt%) alloy powder produced by gas atomisation. Materials & Design, 164, 107548.CrossRefGoogle Scholar
  102. 102.
    Yildirim, B., Yang, H., Gouldstone, A., & Müftü, S. (2017). Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2204), 20160936.CrossRefGoogle Scholar
  103. 103.
    Nastic, A., Vijay, M., Tieu, A., Rahmati, S., & Jodoin, B. (2017). Experimental and numerical study of the influence of substrate surface preparation on adhesion mechanisms of aluminum cold spray coatings on 300 M steel substrates. Journal of Thermal Spray Technology, 26(7), 1461–1483.CrossRefGoogle Scholar
  104. 104.
    Oliver, W. C., & Pharr, G. M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 19(01), 3–20.CrossRefGoogle Scholar
  105. 105.
    Nastic, A., et al. (2015). Instrumented and vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor. Journal of Materials Science and Technology, 31(8), 773–783.CrossRefGoogle Scholar
  106. 106.
    Goldbaum, D., Chromik, R. R., Brodusch, N., & Gauvin, R. (2015). Microstructure and mechanical properties of Ti cold-spray splats determined by electron channeling contrast imaging and nanoindentation mapping. Microscopy and Microanalysis, 21, 570–581.CrossRefGoogle Scholar
  107. 107.
    Goldbaum, D., Chromik, R. R., Yue, S., Irissou, E., & Legoux, J.-G. (2011). Mechanical property mapping of cold sprayed Ti splats and coatings. Journal of Thermal Spray Technology, 20(3), 486–496.CrossRefGoogle Scholar
  108. 108.
    List, A., et al. (2014). Cold spraying of amorphous Cu50Zr50 alloys. Journal of Thermal Spray Technology, 24(1–2), 108–118.Google Scholar
  109. 109.
    Henao, J., et al. (2016). Influence of the substrate on the formation of metallic glass coatings by cold gas spraying. Journal of Thermal Spray Technology, 25(5), 992–1008.CrossRefGoogle Scholar
  110. 110.
    Yoon, S., Xiong, Y., Kim, H., & Lee, C. (2009). Dependence of initial powder temperature on impact behaviour of bulk metallic glass in a kinetic spray process. Journal of Physics D: Applied Physics, 42, 5.Google Scholar
  111. 111.
    Concustell, A., et al. (2015). On the formation of metallic glass coatings by means of Cold Gas Spray technology. Journal of Alloys and Compounds, 651, 764–772.CrossRefGoogle Scholar
  112. 112.
    Ajdelsztajn, L., Jodoin, B., Richer, P., Sansoucy, E., & Lavernia, E. J. (2006). Cold gas dynamic spraying of iron-base amorphous alloy. Journal of Thermal Spray Technology, 15(4), 495–500.CrossRefGoogle Scholar
  113. 113.
    List, A., Gärtner, F., Schmidt, T., & Klassen, T. (2012). Impact conditions for cold spraying of hard metallic glasses. Journal of Thermal Spray Technology, 21(3–4), 531–540.CrossRefGoogle Scholar
  114. 114.
    Kwon, O.-J., et al. (2007). Thermal and mechanical behaviors of Cu–Zr amorphous alloys. Materials Science and Engineering: A, 449–451, 169–171.CrossRefGoogle Scholar
  115. 115.
    Yoon, S., Lee, C., Choi, H., & Jo, H. (2006). Kinetic spraying deposition behavior of bulk amorphous NiTiZrSiSn feedstock. Materials Science and Engineering: A, 415(1–2), 45–52.CrossRefGoogle Scholar
  116. 116.
    Demetriou, M. D., & Johnson, W. L. (2004). Modeling the transient flow of undercooled glass-forming liquids. Journal of Applied Physics, 95(5), 2857–2865.CrossRefGoogle Scholar
  117. 117.
    Chen, M. (2008). Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annual Review of Materials Research, 38(1), 445–469.CrossRefGoogle Scholar
  118. 118.
    Greer, A. L., Cheng, Y. Q., & Ma, E. (2013). Shear bands in metallic glasses. Materials Science and Engineering: R: Reports, 74(4), 71–132.CrossRefGoogle Scholar
  119. 119.
    Borchers, C., Schmidt, T., Gärtner, F., & Kreye, H. (2008). High strain rate deformation microstructures of stainless steel 316L by cold spraying and explosive powder compaction. Applied Physics A, 90(3), 517–526.CrossRefGoogle Scholar
  120. 120.
    Gärtner, F., et al. (2006). Mechanical properties of cold-sprayed and thermally sprayed copper coatings. Surface and Coatings Technology, 200(24), 6770–6782.CrossRefGoogle Scholar
  121. 121.
    Brewer, L. N., Schiel, J. F., Menon, E. S. K., & Woo, D. J. (2018). The connections between powder variability and coating microstructures for cold spray deposition of austenitic stainless steel. Surface and Coatings Technology, 334, 50–60.CrossRefGoogle Scholar
  122. 122.
    Liu, T., Leazer, J. D., Menon, S. K., & Brewer, L. N. (2018). Microstructural analysis of gas atomized Al-Cu alloy feedstock powders for cold spray deposition. Surface and Coatings Technology, 350, 621–632.CrossRefGoogle Scholar
  123. 123.
    Coddet, P., Verdy, C., Coddet, C., & Debray, F. (2015). Effect of cold work, second phase precipitation and heat treatments on the mechanical properties of copper–silver alloys manufactured by cold spray. Materials Science and Engineering: A, 637, 40–47.CrossRefGoogle Scholar
  124. 124.
    Li, K., Song, C., Zhai, Q., Stoica, M., & Eckert, J. (2014). Microstructure evolution of gas-atomized Fe–6.5 wt% Si droplets. Journal of Materials Research, 29(04), 527–534.Google Scholar
  125. 125.
    Rokni, M. R., Widener, C. A., & Champagne, V. R. (2014). Microstructural evolution of 6061 aluminum gas-atomized powder and high-pressure cold-sprayed deposition. Journal of Thermal Spray Technology, 23(3), 514–524.CrossRefGoogle Scholar
  126. 126.
    Rokni, M. R., Zarei-Hanzaki, A., & Abedi, H. R. (2012). Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures. Materials Science and Engineering A, 532, 593–600.CrossRefGoogle Scholar
  127. 127.
    Story, W. A., & Brewer, L. N. (2018). Heat treatment of gas-atomized powders for cold spray deposition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 49(2), 446–449.CrossRefGoogle Scholar
  128. 128.
    Field, D. P., Bradford, L. T., Nowell, M. M., & Lillo, T. M. (2007). The role of annealing twins during recrystallization of Cu. Acta Materialia, 55(12), 4233–4241.CrossRefGoogle Scholar
  129. 129.
    Borchers, C., Gärtner, F., Stoltenhoff, T., Assadi, H., & Kreye, H. (2003). Microstructural and macroscopic properties of cold sprayed copper coatings. Journal of Applied Physics, 93(12), 10064–10070.CrossRefGoogle Scholar
  130. 130.
    Li, W., Huang, C., Yu, M., & Liao, H. (2013). Investigation on mechanical property of annealed copper particles and cold sprayed copper coating by a micro-indentation testing. Materials & Design, 46, 219–226.CrossRefGoogle Scholar
  131. 131.
    Ning, X.-J., Jang, J.-H., & Kim, H.-J. (2007). The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process. Applied Surface Science, 253(18), 7449–7455.CrossRefGoogle Scholar
  132. 132.
    Hall, A. C., Cook, D. J., Neiser, R. A., Roemer, T. J., & Hirschfeld, D. A. (2006). The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum. Journal of Thermal Spray Technology, 15(2), 233–238.CrossRefGoogle Scholar
  133. 133.
    Qiu, X., et al. (2017). Effect of heat treatment on microstructure and mechanical properties of A380 aluminum alloy deposited by cold spray. Journal of Thermal Spray Technology, 26(8), 1898–1907.CrossRefGoogle Scholar
  134. 134.
    Barnett, B., Trexler, M., & Champagne, V. (2015). Cold sprayed refractory metals for chrome reduction in gun barrel liners. International Journal of Refractory Metals and Hard Materials, 53, 139–143.CrossRefGoogle Scholar
  135. 135.
    Conrad, H. (1981). Effect of interstitial solutes on the strength and ductility of titanium. Progress in Materials Science, 26(2–4), 123–403.CrossRefGoogle Scholar
  136. 136.
    Champagne, V. K. (2007). The cold spray materials deposition process: Fundamentals and applications. Lisle, IL: Woodhead.Google Scholar
  137. 137.
    Oh, J.-M., et al. (2011). Oxygen effects on the mechanical properties and lattice strain of Ti and Ti-6Al-4V. Metals and Materials International, 17(5), 733–736.CrossRefGoogle Scholar
  138. 138.
    Robson, J. D., Henry, D. T., & Davis, B. (2011). Particle effects on recrystallization in magnesium–manganese alloys: Particle pinning. Materials Science and Engineering: A, 528(12), 4239–4247.CrossRefGoogle Scholar
  139. 139.
    Apps, P. J., Berta, M., & Prangnell, P. B. (2005). The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains. Acta Materialia, 53(2), 499–511.CrossRefGoogle Scholar
  140. 140.
    Brown, L. M. (1997). Transition from laminar to rotational motion in plasticity. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 355(1731), 1979–1990.MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    Zhang, Y., et al. (2017). The effect of submicron second-phase particles on the rate of grain refinement in a copper-oxygen alloy during cold spray. Journal of Thermal Spray Technology, 26(7), 1509–1516.CrossRefGoogle Scholar
  142. 142.
    Lin, X. H., Johnson, W. L., & Rhim, W. K. (1997). Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Materials Transactions JIM, 38(5), 473–477.CrossRefGoogle Scholar
  143. 143.
    Wood, G. C., & Stringer, J. (1993). The adhesion of growing oxide scales to the substrate. Le Journal de Physique IV, 03(C9), C9-65–C9-74.Google Scholar
  144. 144.
    Cabrera, N., & Mott, N. F. (1949). Theory of the oxidation of metals. Reports on Progress in Physics, 12(1), 308.CrossRefGoogle Scholar
  145. 145.
    Chen, C., et al. (2018). On the role of oxide film’s cleaning effect into the metallurgical bonding during cold spray. Materials Letters, 210, 199–202.CrossRefGoogle Scholar
  146. 146.
    Watanabe, Y., Yoshida, C., Atsumi, K., Yamada, M., & Fukumoto, M. (2014). Influence of substrate temperature on adhesion strength of cold-sprayed coatings. Journal of Thermal Spray Technology, 24(1–2), 86–91.Google Scholar
  147. 147.
    Ichikawa, Y., Tokoro, R., Tanno, M., & Ogawa, K. (2019). Elucidation of cold-spray deposition mechanism by auger electron spectroscopic evaluation of bonding interface oxide film. Acta Materialia, 164, 39–49.CrossRefGoogle Scholar
  148. 148.
    Hassani-Gangaraj, M., Veysset, D., Nelson, K. A., & Schuh, C. A. (2019). Impact-bonding with aluminum, silver, and gold microparticles: Toward understanding the role of native oxide layer. Applied Surface Science, 476, 528–532.CrossRefGoogle Scholar
  149. 149.
    McCune, R. C., Donlon, W. T., Popoola, O. O., & Cartwright, E. L. (2000). Characterization of copper layers produced by cold gas-dynamic spraying. Journal of Thermal Spray Technology, 9(1), 73–82.CrossRefGoogle Scholar
  150. 150.
    Kang, K., Yoon, S., Ji, Y., & Lee, C. (2008). Oxidation dependency of critical velocity for aluminum feedstock deposition in kinetic spraying process. Materials Science and Engineering: A, 486(1–2), 300–307.CrossRefGoogle Scholar
  151. 151.
    Khanna, A. S. (2012). High temperature oxidation. Handbook of Environmental Degradation of Materials, 127–194.Google Scholar
  152. 152.
    Casati, R., Fabrizi, A., Tuissi, A., Xia, K., & Vedani, M. (2015). ECAP consolidation of Al matrix composites reinforced with in-situ γ-Al2O3 nanoparticles. Materials Science and Engineering: A, 648, 113–122.CrossRefGoogle Scholar
  153. 153.
    Mimura, K., Lim, J.-W., Isshiki, M., Zhu, Y., & Jiang, Q. (2006). Brief review of oxidation kinetics of copper at 350 °C to 1050 °C. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37(4), 1231–1237.CrossRefGoogle Scholar
  154. 154.
    Fujita, K., Ando, D., Uchikoshi, M., Mimura, K., & Isshiki, M. (2013). New model for low-temperature oxidation of copper single crystal. Applied Surface Science, 276, 347–358.CrossRefGoogle Scholar
  155. 155.
    Liang, Y., et al. (2017). Oxidation-resistant micron-sized Cu–Sn solid particles fabricated by a one-step and scalable method. RSC Advances, 7(38), 23468–23477.CrossRefGoogle Scholar
  156. 156.
    Feng, Z., Marks, C. R., & Barkatt, A. (2003). Oxidation-rate excursions during the oxidation of copper in gaseous environments at moderate temperatures. Oxidation of Metals, 60(5/6), 393–408.CrossRefGoogle Scholar
  157. 157.
    Bauer, D. M., et al. (2017). Investigations of aging behaviour for aluminium powders during an atmosphere simulation of the LBM process. Powder Metallurgy, 60(3), 175–183.CrossRefGoogle Scholar
  158. 158.
    Godard, H. P. (1967). Oxide film growth over five years on some aluminum sheet alloys in air of varying humidity at room temperature. Journal of the Electrochemical Society, 114(4), 354.CrossRefGoogle Scholar
  159. 159.
    Baril, E., Lefebvre, L. P., & Thomas, Y. (2011). Interstitial elements in titanium powder metallurgy: Sources and control. Powder Metallurgy, 54(3), 183–186.CrossRefGoogle Scholar
  160. 160.
    Pouilleau, J., Devilliers, D., Garrido, F., Durand-Vidal, S., & Mahé, E. (1997). Structure and composition of passive titanium oxide films. Materials Science and Engineering: B, 47(3), 235–243.CrossRefGoogle Scholar
  161. 161.
    Hiromoto, S., Hanawa, T., & Asami, K. (2004). Composition of surface oxide film of titanium with culturing murine fibroblasts L929. Biomaterials, 25(6), 979–986.CrossRefGoogle Scholar
  162. 162.
    Yin, S., Wang, X., Li, W., Liao, H., & Jie, H. (2012). Deformation behavior of the oxide film on the surface of cold sprayed powder particle. Applied Surface Science, 259, 294–300.CrossRefGoogle Scholar
  163. 163.
    Asgari, H., Baxter, C., Hosseinkhani, K., & Mohammadi, M. (2017). On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. Materials Science and Engineering: A, 707, 148–158.CrossRefGoogle Scholar
  164. 164.
    Ardila, L. C., et al. (2014). Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. Physics Procedia, 56, 99–107.CrossRefGoogle Scholar
  165. 165.
    Perry, J., Richer, P., Jodoin, B., & Matte, E. (2019). Pin fin array heat sinks by cold spray additive manufacturing: Economics of powder recycling. Journal of Thermal Spray Technology, 28(1–2), 144–160.CrossRefGoogle Scholar
  166. 166.
    Tang, H. P., et al. (2015). Effect of powder reuse times on additive manufacturing of Ti-6Al-4V by selective electron beam melting. JOM Journal of the Minerals Metals and Materials Society, 67(3), 555–563.CrossRefGoogle Scholar
  167. 167.
    Strondl, A., Lyckfeldt, O., Brodin, H., & Ackelid, U. (2015). Characterization and control of powder properties for additive manufacturing. JOM Journal of the Minerals Metals and Materials Society, 67(3), 549–554.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aleksandra Nastic
    • 1
    Email author
  • Daniel MacDonald
    • 1
  • Bertrand Jodoin
    • 1
  1. 1.Ottawa Cold Spray Laboratory, Department of Mechanical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations