Advertisement

Data Augmentation in Training Deep Learning Models for Medical Image Analysis

  • Behnaz Abdollahi
  • Naofumi Tomita
  • Saeed HassanpourEmail author
Chapter
  • 29 Downloads
Part of the Intelligent Systems Reference Library book series (ISRL, volume 186)

Abstract

Data augmentation is widely utilized to achieve more generalizable and accurate deep learning models based on relatively small labeled datasets. Data augmentation techniques are particularly critical in medical applications, where access to labeled data samples is commonly limited. Although data augmentation methods generally have a positive impact on the performance of deep learning models, not all data augmentation techniques are applicable and suitable for analyzing medical images. In this chapter, we review common image augmentation techniques and their properties. Furthermore, we present and evaluate application-specific data augmentation methods that are beneficial for medical image analysis. The material presented in this chapter aims to guide the use of data augmentation techniques in training deep learning models for various medical image analysis applications, in which annotated data are not abundant or are difficult to acquire.

References

  1. 1.
    He, K., et al.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision (2015)Google Scholar
  2. 2.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)Google Scholar
  3. 3.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533 (1986)Google Scholar
  4. 4.
    Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int J Comput Vision 115(3), 211–252 (2015)MathSciNetGoogle Scholar
  5. 5.
    Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Icdar. IEEE (2003)Google Scholar
  6. 6.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)Google Scholar
  7. 7.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
  8. 8.
    He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)Google Scholar
  9. 9.
    Eaton-Rosen, Z., et al.: Improving data augmentation for medical image segmentation (2018)Google Scholar
  10. 10.
    Izadi, S., et al.: Generative adversarial networks to segment skin lesions. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)Google Scholar
  11. 11.
    Frid-Adar, M., et al.: Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE (2018)Google Scholar
  12. 12.
    Larson, D.B., et al.: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology 287(1), 313–322 (2017)MathSciNetGoogle Scholar
  13. 13.
    Lee, H., et al.: Fully automated deep learning system for bone age assessment. J Digit Imaging 30(4), 427–441 (2017)Google Scholar
  14. 14.
    Fischer, A.H., et al.: Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protoc. 2008(5), pdb. prot4986 (2008)Google Scholar
  15. 15.
    Biberacher, V., et al.: Intra-and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Neuroimage 142, 188–197 (2016)Google Scholar
  16. 16.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2015)Google Scholar
  17. 17.
    Castro, E., Cardoso, J.S., Pereira, J.C.: Elastic deformations for data augmentation in breast cancer mass detection. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE (2018)Google Scholar
  18. 18.
    Christ, P.F., et al.: Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv:1702.05970 (2017)
  19. 19.
    Sugino, T., et al.: Automatic segmentation of eyeball structures from micro-CT images based on sparse annotation. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics (2018)Google Scholar
  20. 20.
    Zhang, H., et al.: Mixup: Beyond empirical risk minimization. arXiv:1710.09412 (2017)
  21. 21.
    Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)Google Scholar
  22. 22.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)
  23. 23.
    Salimans, T., et al.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems (2016)Google Scholar
  24. 24.
    Paszke, A., et al.: PyTorch (2017)Google Scholar
  25. 25.
    Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI (2016)Google Scholar
  26. 26.
  27. 27.
  28. 28.
  29. 29.
    arXiv:1606.00897Bauer, S., et al.: Multi-organ cancer classification and survival analysis. (2016)
  30. 30.
    Korbar, B., et al.: Deep learning for classification of colorectal polyps on whole-slide images. J. Pathol. Inf. 8 (2017)Google Scholar
  31. 31.
    Veta, M., Van Diest, P.J., Pluim, J.P.: Cutting out the middleman: measuring nuclear area in histopathology slides without segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)Google Scholar
  32. 32.
    Maninis, K.-K., et al.: Deep retinal image understanding. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)Google Scholar
  33. 33.
    Yang, Y., et al.: Lesion detection and grading of diabetic retinopathy via two-stages deep convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2017)Google Scholar
  34. 34.
    Galdran, A., et al.: Data-driven color augmentation techniques for deep skin image analysis. arXiv:1703.03702 (2017)
  35. 35.
    Tomita, N., et al.: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.98, 8–15 (2018)Google Scholar
  36. 36.
    Pereira, S., et al.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5), 1240–1251 (2016)Google Scholar
  37. 37.
    Madani, A., et al.: Chest x-ray generation and data augmentation for cardiovascular abnormality classification. In: Medical Imaging 2018: Image Processing. International Society for Optics and Photonics (2018)Google Scholar
  38. 38.
    Quan, T.M., Hildebrand, D.G., Jeong, W.-K.: Fusionnet: a deep fully residual convolutional neural network for image segmentation in connectomics (2016)Google Scholar
  39. 39.
    Goodfellow, I., et al.: Deep learning, vol. 1. MIT press, Cambridge (2016).Google Scholar
  40. 40.
    Abràmoff, M.D., et al.: Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 57(13), 5200–5206 (2016)Google Scholar
  41. 41.
    BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Behnaz Abdollahi
    • 1
  • Naofumi Tomita
    • 1
  • Saeed Hassanpour
    • 1
    Email author
  1. 1.Biomedical Data Science DepartmentDartmouth CollegeHanoverUSA

Personalised recommendations