Bots, Elections, and Social Media: A Brief Overview

  • Emilio FerraraEmail author
Part of the Lecture Notes in Social Networks book series (LNSN)


Bots, software-controlled accounts that operate on social media, have been used to manipulate and deceive. We studied the characteristics and activity of bots around major political events, including elections in various countries. In this chapter, we summarize our findings of bot operations in the context of the 2016 and 2018 US Presidential and Midterm elections and the 2017 French Presidential election.


Social media Bots Influence Disinformation 



The author is grateful to his collaborators and coauthors on the topics covered in this paper, in particular Adam Badawy, Alessandro Bessi, Ashok Deb, and Luca Luceri, who contributed significantly to three papers widely discussed in this chapter [10, 53, 54].


  1. 1.
    Abokhodair, N., Yoo, D., McDonald, D.W.: Dissecting a social botnet: growth, content and influence in twitter. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 839–851. ACM (2015)Google Scholar
  2. 2.
    Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election: divided they blog. In: 3rd International Workshop on Link Discovery, pp. 36–43. ACM (2005)Google Scholar
  3. 3.
    Alarifi, A., Alsaleh, M., Al-Salman, A.: Twitter turing test: identifying social machines. Inf. Sci. 372, 332–346 (2016)CrossRefGoogle Scholar
  4. 4.
    Allem, J.-P., Ferrara, E., Uppu, S.P., Cruz, T.B., Unger, J.B.: E-cigarette surveillance with social media data: social bots, emerging topics, and trends. JMIR Public Health Surveill. 3(4), e98 (2017)CrossRefGoogle Scholar
  5. 5.
    Aral, S., Walker, D.: Creating social contagion through viral product design: a randomized trial of peer influence in networks. Manag. Sci. 57(9), 1623–1639 (2011)CrossRefGoogle Scholar
  6. 6.
    Badawy, A., Ferrara, E., Lerman, K.: Analyzing the digital traces of political manipulation: the 2016 russian interference twitter campaign. In: Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2018 (2018)Google Scholar
  7. 7.
    Badawy, A., Lerman, K., Ferrara, E.: Who falls for online political manipulation? In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 162–168 (2019)Google Scholar
  8. 8.
    Barberá, P., Wang, N., Bonneau, R., Jost, J.T., Nagler, J., Tucker, J., González-Bailón, S.: The critical periphery in the growth of social protests. PLoS One 10(11), e0143611 (2015)CrossRefGoogle Scholar
  9. 9.
    Bekafigo, M.A., McBride, A.: Who tweets about politics? political participation of twitter users during the 2011gubernatorial elections. Soc. Sci. Comput. Rev. 31(5), 625–643 (2013)CrossRefGoogle Scholar
  10. 10.
    Bessi, A., Ferrara, E.: Social bots distort the 2016 us presidential election online discussion. First Monday 21(11) (2016)Google Scholar
  11. 11.
    Boshmaf, Y., Muslukhov, I., Beznosov, K., Ripeanu, M.: The socialbot network: when bots socialize for fame and money. In: Proceedings of the 27th Annual Computer Security Applications Conference, pp. 93–102. ACM (2011)Google Scholar
  12. 12.
    Boyd, D., Crawford, K.: Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 15(5), 662–679 (2012)CrossRefGoogle Scholar
  13. 13.
    Carlisle, J.E., Patton, R.C.: Is social media changing how we understand political engagement? an analysis of facebook and the 2008 presidential election. Polit. Res. Q. 66(4), 883–895 (2013)CrossRefGoogle Scholar
  14. 14.
    Centola, D.: An experimental study of homophily in the adoption of health behavior. Science 334(6060), 1269–1272 (2011)CrossRefGoogle Scholar
  15. 15.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring user influence in twitter: the million follower fallacy. In: Fourth International AAAI Conference on Weblogs and Social Media (ICWSM 2010), pp. 10–17. AAAI Press (2010)Google Scholar
  16. 16.
    Chavoshi, N., Hamooni, H., Mueen, A.: Debot: twitter bot detection via warped correlation. In: ICDM, pp. 817–822 (2016)Google Scholar
  17. 17.
    Conover, M., Ratkiewicz, J., Francisco, M.R., Gonçalves, B., Menczer, F., Flammini, A.: Political polarization on twitter. ICWSM 133, 89–96 (2011)Google Scholar
  18. 18.
    Conover, M.D., Davis, C., Ferrara, E., McKelvey, K., Menczer, F., Flammini, A.: The geospatial characteristics of a social movement communication network. PLoS One 8(3), e55957 (2013)CrossRefGoogle Scholar
  19. 19.
    Conover, M.D., Ferrara, E., Menczer, F., Flammini, A.: The digital evolution of occupy wall street. PLoS One 8(5), e64679 (2013)CrossRefGoogle Scholar
  20. 20.
    Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: The paradigm-shift of social spambots: evidence, theories, and tools for the arms race. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 963–972. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  21. 21.
    Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: Botornot: a system to evaluate social bots. In: WWW ’16 Companion Proceedings of the 25th International Conference Companion on World Wide Web, pp. 273–274. ACM (2016)Google Scholar
  22. 22.
    De Cristofaro, E., Kourtellis, N., Leontiadis, I., Stringhini, G., Zhou, S., et al.: Lobo: evaluation of generalization deficiencies in twitter bot classifiers. In: Proceedings of the 34th Annual Computer Security Applications Conference, pp. 137–146. ACM (2018)Google Scholar
  23. 23.
    DiGrazia, J., McKelvey, K., Bollen, J., Rojas, F.: More tweets, more votes: social media as a quantitative indicator of political behavior. PLoS One 8(11), e79449 (2013)CrossRefGoogle Scholar
  24. 24.
    Echeverria, J., Besel, C., Zhou, S.: Discovery of the twitter Bursty botnet. Data Science for Cyber-Security (2017)Google Scholar
  25. 25.
    Effing, R., Van Hillegersberg, J., Huibers, T.: Social media and political participation: are facebook, twitter and youtube democratizing our political systems? In International Conference on Electronic Participation, pp. 25–35. Springer (2011)Google Scholar
  26. 26.
    El-Khalili, S.: Social media as a government propaganda tool in post-revolutionary Egypt. First Monday 18(3) (2013)Google Scholar
  27. 27.
    Ferrara, E.: Manipulation and abuse on social media. ACM SIGWEB Newsletter (4) (2015)Google Scholar
  28. 28.
    Ferrara, E.: Disinformation and social bot operations in the run up to the 2017 french presidential election. First Monday 22(8) (2017)Google Scholar
  29. 29.
    Ferrara, E.: The history of digital spam. Commun. ACM 62(8), 2–91 (2019)CrossRefGoogle Scholar
  30. 30.
    Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social bots. Commun. ACM 59(7), 96–104 (2016)CrossRefGoogle Scholar
  31. 31.
    Ferrara, E., Varol, O., Menczer, F., Flammini, A.: Detection of promoted social media campaigns. In: Tenth International AAAI Conference on Web and Social Media, pp. 563–566 (2016)Google Scholar
  32. 32.
    Ferrara, E., Yang, Z.: Measuring emotional contagion in social media. PLoS One 10(11), e0142390 (2015)CrossRefGoogle Scholar
  33. 33.
    Ferrara, E., Yang, Z.: Quantifying the effect of sentiment on information diffusion in social media. PeerJ Comput. Sci. 1, e26 (2015)CrossRefGoogle Scholar
  34. 34.
    Gao, H., Barbier, G., Goolsby, R.: Harnessing the crowdsourcing power of social media for disaster relief. IEEE Intell. Syst. 26(3), 10–14 (2011)CrossRefGoogle Scholar
  35. 35.
    Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and characterizing social spam campaigns. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, pp. 35–47. ACM (2010)Google Scholar
  36. 36.
    Gilani, Z., Kochmar, E., Crowcroft, J.: Classification of twitter accounts into automated agents and human users. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 489–496. ACM (2017)Google Scholar
  37. 37.
    González-Bailón, S., Borge-Holthoefer, J., Moreno, Y.: Broadcasters and hidden influentials in online protest diffusion. Am. Behav. Sci. 57(7), 943–965 (2013)CrossRefGoogle Scholar
  38. 38.
    González-Bailón, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1, 197 (2011)CrossRefGoogle Scholar
  39. 39.
    Howard, P.N.: New Media Campaigns and the Managed Citizen. Cambridge University Press, Cambridge (2006)Google Scholar
  40. 40.
    Howard, P.N., Kollanyi, B.: Bots, #strongerin, and #brexit: computational propaganda during the uk-eu referendum. Available at SSRN 2798311 (2016)Google Scholar
  41. 41.
    Hwang, T., Pearce, I., Nanis, M.: Socialbots: voices from the fronts. Interactions 19(2), 38–45 (2012)CrossRefGoogle Scholar
  42. 42.
    Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Commun. ACM 50(10), 94–100 (2007)CrossRefGoogle Scholar
  43. 43.
    Jin, X., Lin, C., Luo, J., Han, J.: A data mining-based spam detection system for social media networks. Proceedings VLDB Endowment 4(12), 1458–1461 (2011)CrossRefGoogle Scholar
  44. 44.
    Kollanyi, B., Howard, P.N., Woolley, S.C.: Bots and automation over twitter during the first us presidential debate. Technical report, COMPROP Data Memo (2016)Google Scholar
  45. 45.
    Kramer, A.D., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. 111(24), 8788–8790 (2014)CrossRefGoogle Scholar
  46. 46.
    Kudugunta, S., Ferrara, E.: Deep neural networks for bot detection. Inf. Sci. 467, 312–322 (2018)CrossRefGoogle Scholar
  47. 47.
    Kümpel, A.S., Karnowski, V., Keyling, T.: News sharing in social media: a review of current research on news sharing users, content, and networks. Soc. Media Soc. 1(2), 2056305115610141 (2015)Google Scholar
  48. 48.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web, pp. 591–600 (2010)Google Scholar
  49. 49.
    Latonero, M., Shklovski, I.: Emergency management, twitter, and social media evangelism. In: Using Social and Information Technologies for Disaster and Crisis Management, pp. 196–212. IGI Global, Hershey (2013)Google Scholar
  50. 50.
    Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., et al.: Life in the network: the coming age of computational social science. Science (New York, NY) 323(5915), 721 (2009)Google Scholar
  51. 51.
    Lee, K., Caverlee, J., Webb, S.: The social honeypot project: protecting online communities from spammers. In: Proceedings of the 19th International Conference on World Wide Web, pp. 1139–1140. ACM (2010)Google Scholar
  52. 52.
    Lee, K., Caverlee, J., Webb, S.: Uncovering social spammers: social honeypots+ machine learning. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 435–442. ACM (2010)Google Scholar
  53. 53.
    Luceri, L., Deb, A., Badawy, A., Ferrara, E.: Red bots do it better: comparative analysis of social bot partisan behavior. In: Companion Proceedings of the 2019 World Wide Web Conference, pp. 1007–1012 (2019)Google Scholar
  54. 54.
    Luceri, L., Deb, A., Giordano, S., Ferrara, E.: Evolution of bot and human behavior during elections. First Monday 24(9) (2019)Google Scholar
  55. 55.
    Lutz, C., Hoffmann, C.P., Meckel, M.: Beyond just politics: a systematic literature review of online participation. First Monday 19(7) (2014)Google Scholar
  56. 56.
    Markines, B., Cattuto, C., Menczer, F.: Social spam detection. In: Proceedings of the 5th International Workshop on Adversarial Information Retrieval on the Web, pp. 41–48 (2009)Google Scholar
  57. 57.
    Messias, J., Schmidt, L., Oliveira, R., Benevenuto, F.: You followed my bot! transforming robots into influential users in twitter. First Monday 18(7) (2013)Google Scholar
  58. 58.
    Metaxas, P.T., Mustafaraj, E.: Social media and the elections. Science 338, 472–473 (2012)CrossRefGoogle Scholar
  59. 59.
    Minnich, A., Chavoshi, N., Koutra, D., Mueen, A.: Botwalk: efficient adaptive exploration of twitter bot networks. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, pp. 467–474. ACM (2017)Google Scholar
  60. 60.
    Mønsted, B., Sapieżyński, P., Ferrara, E., Lehmann, S.: Evidence of complex contagion of information in social media: an experiment using twitter bots. PLos One 12(9), e0184148 (2017)CrossRefGoogle Scholar
  61. 61.
    Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer reviews. In: Proceedings of the 21st International Conference on World Wide Web, pp. 191–200 (2012)Google Scholar
  62. 62.
    Mustafaraj, E., Metaxas, P.T.: From obscurity to prominence in minutes: political speech and real-time search (2010)Google Scholar
  63. 63.
    Pozzana, I., Ferrara, E.: Measuring bot and human behavioral dynamics. arXiv preprint arXiv:1802.04286 (2018)Google Scholar
  64. 64.
    Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8) (2019)Google Scholar
  65. 65.
    Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Flammini, A., Menczer, F.: Detecting and tracking political abuse in social media. ICWSM 11, 297–304 (2011)Google Scholar
  66. 66.
    Ratkiewicz, J., Conover, M., Meiss, M., Gonçalves, B., Patil, S., Flammini, A., Menczer, F.: Truthy: mapping the spread of astroturf in microblog streams. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 249–252. ACM (2011)Google Scholar
  67. 67.
    Shao, C., Ciampaglia, G.L., Varol, O., Yang, K.-C., Flammini, A., Menczer, F.: The spread of low-credibility content by social bots. Nat. Commun. 9(1), 4787 (2018)CrossRefGoogle Scholar
  68. 68.
    Shorey, S., Howard, P.N.: Automation, algorithms, and politics— automation, big data and politics: a research review. Int. J. Commun. 10, 24 (2016)Google Scholar
  69. 69.
    Song, J., Lee, S., Kim, J.: Spam filtering in twitter using sender-receiver relationship. In: International Workshop on Recent Advances in Intrusion Detection, pp. 301–317 (2011)Google Scholar
  70. 70.
    Stella, M., Ferrara, E., De Domenico, M.: Bots increase exposure to negative and inflammatory content in online social systems. Proc. Natl. Acad. Sci. 115(49), 12435–12440 (2018)CrossRefGoogle Scholar
  71. 71.
    Stieglitz, S., Brachten, F., Ross, B., Jung, A.-K.: Do social bots dream of electric sheep? a categorisation of social media bot accounts. arXiv preprint arXiv:1710.04044 (2017)Google Scholar
  72. 72.
    Stringhini, G., Kruegel, C., Vigna, G.: Detecting spammers on social networks. In: Proceedings of the 26th Annual Computer Security Applications Conference, pp. 1–9. ACM (2010)Google Scholar
  73. 73.
    Stukal, D., Sanovich, S., Bonneau, R., Tucker, J.A.: Detecting bots on russian political twitter. Big Data 5(4), 310–324 (2017)CrossRefGoogle Scholar
  74. 74.
    Subrahmanian, V., Azaria, A., Durst, S., Kagan, V., Galstyan, A., Lerman, K., Zhu, L., Ferrara, E., Flammini, A., Menczer, F.: The darpa twitter bot challenge. Computer 49(6), 38–46 (2016)CrossRefGoogle Scholar
  75. 75.
    Sutton, J.N., Palen, L., Shklovski, I.: Backchannels on the Front Lines: Emergency Uses of Social Media in the 2007 Southern California Wildfires. University of Colorado, Boulder (2008)Google Scholar
  76. 76.
    Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., Kappas, A.: Sentiment strength detection in short informal text. J. Am. Soc. Inf. Sci. Tech. 61(12), 2544–2558 (2010)CrossRefGoogle Scholar
  77. 77.
    Theocharis, Y., Lowe, W., van Deth, J.W., García-Albacete, G.: Using twitter to mobilize protest action: online mobilization patterns and action repertoires in the occupy wall street, indignados, and aganaktismenoi movements. Inf. Commun. Soc. 18(2), 202–220 (2015)CrossRefGoogle Scholar
  78. 78.
    Thomas, K., Grier, C., Song, D., Paxson, V.: Suspended accounts in retrospect: an analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 243–258. ACM (2011)Google Scholar
  79. 79.
    Thomas, K., McCoy, D., Grier, C., Kolcz, A., Paxson, V.: Trafficking fraudulent accounts: the role of the underground market in twitter spam and abuse. In: Usenix Security, vol. 13, pp. 195–210 (2013)Google Scholar
  80. 80.
    Varol, O., Ferrara, E., Davis, C., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: International AAAI Conference on Web and Social Media (2017)Google Scholar
  81. 81.
    Varol, O., Ferrara, E., Menczer, F., Flammini, A.: Early detection of promoted campaigns on social media. EPJ Data Sci. 6(1), 13 (2017)CrossRefGoogle Scholar
  82. 82.
    Varol, O., Ferrara, E., Ogan, C.L., Menczer, F., Flammini, A.: Evolution of online user behavior during a social upheaval. In: Proceedings 2014 ACM Conference on Web Science, pp. 81–90 (2014)Google Scholar
  83. 83.
    Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online. Science 359(6380), 1146–1151 (2018)CrossRefGoogle Scholar
  84. 84.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge university press, New York (1994)zbMATHCrossRefGoogle Scholar
  85. 85.
    Yang, C., Harkreader, R., Zhang, J., Shin, S., Gu, G.: Analyzing spammers’ social networks for fun and profit: a case study of cyber criminal ecosystem on twitter. In: Proceedings of the 21st International Conference on World Wide Web, pp. 71–80. ACM (2012)Google Scholar
  86. 86.
    Yang, K.-C., Varol, O., Davis, C.A., Ferrara, E., Flammini, A., Menczer, F.: Arming the public with artificial intelligence to counter social bots. Hum. Behav. Emerg. Technol. 1, e115 (2019)CrossRefGoogle Scholar
  87. 87.
    Yang, X., Chen, B.-C., Maity, M., Ferrara, E.: Social politics: agenda setting and political communication on social media. In: International Conference on Social Informatics, pp. 330–344. Springer (2016)Google Scholar
  88. 88.
    Yates, D., Paquette, S.: Emergency knowledge management and social media technologies: a case study of the 2010 haitian earthquake. Int. J. Inf. Manag. 31(1), 6–13 (2011)CrossRefGoogle Scholar
  89. 89.
    Yin, J., Lampert, A., Cameron, M., Robinson, B., Power, R.: Using social media to enhance emergency situation awareness. IEEE Intell. Syst. 27(6), 52–59 (2012)CrossRefGoogle Scholar
  90. 90.
    Zhang, X., Zhu, S., Liang, W.: Detecting spam and promoting campaigns in the twitter social network. In: Data Mining (ICDM), 2012 IEEE 12th International Conference on, pp. 1194–1199. IEEE (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.USC Information Sciences InstituteMarina del ReyUSA

Personalised recommendations