Advertisement

Microbial Inactivation Models for Thermal Processes

  • Simen Akkermans
  • Cindy Smet
  • Vasilis Valdramidis
  • Jan Van ImpeEmail author
Chapter
  • 119 Downloads
Part of the Food Engineering Series book series (FSES)

Abstract

In many food products, the population of microorganisms present after initial manufacturing stages is too high. As such, an intervention treatment is required to reduce the microbial load of these products. Thermal treatments are still by far the most common methods for microbial inactivation. The appropriate use of these technologies is aided by using mathematical models that describe the effect of temperature and other conditions on microbial responses. These kinetic models are subcategorised as primary models that describe the evolution of the population with time and secondary models that describe the effect of the environmental conditions on the parameters of the primary models. This chapter offers a comprehensive discussion of primary and secondary models for thermal microbial inactivation.

Keywords

Thermal inactivation Primary model Secondary model D-value z-value 

Notes

Acknowledgements

This work was supported by projects C24/18/046 and PFV/10/002 (Center of Excellence OPTEC-Optimization in Engineering) and grant PDM/18/136 of the KU Leuven Research Fund and by the Fund for Scientific Research-Flanders, project G.0863.18. This work was also partly supported by the CA15118 Mathematical and Computer Science Methods for Food Science and Industry (FoodMC).

References

  1. Abe H, Koyama K, Kawamura S et al (2018) Stochastic evaluation of Salmonella enterica lethality during thermal inactivation. Int J Food Microbiol 285:129–135PubMedCrossRefGoogle Scholar
  2. Albert I, Mafart P (2005) A modified Weibull model for bacterial inactivation. Int J Food Microbiol 100(1–3):197–211PubMedCrossRefGoogle Scholar
  3. Arrhenius S (1889) Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyt. Z Phys Chem 4(1):96–116Google Scholar
  4. Aspridou Z, Koutsoumanis KP (2015) Individual cell heterogeneity as variability source in population dynamics of microbial inactivation. Food Microbiol 45:216–221PubMedCrossRefGoogle Scholar
  5. Ball CO, Olson FCW (1957) Sterilization in food technology. McGraw-Hill, New YorkGoogle Scholar
  6. Baril E, Coroller L, Couvert O et al (2012) Food Microbiol 30(1):29–36PubMedCrossRefGoogle Scholar
  7. Bigelow W (1921) The logarithmic nature of thermal death curves. J Infect Des 29:528–536CrossRefGoogle Scholar
  8. Cappuyns AM, Valdramidis VP, Van Impe JFM (2012) Modelling microbial inactivation kinetics: primary models. In: Valdramidis VP, Van Impe JF (eds) Progress on quantitative approaches for thermal food processing. Nova Scientific Publishers, Inc., New York, pp 99–119Google Scholar
  9. Cerf O (1977) Tailing of survival curves of bacterial spores. J Appl Bacteriol 42(1):1–19PubMedCrossRefGoogle Scholar
  10. Cerf O, Davey KR, Sadoudi AK (1996) Thermal inactivation of bacteria – a new predictive model for the combined effect of three environmental factors: temperature, pH and water activity. Food Res Int 29(3–4):219–226CrossRefGoogle Scholar
  11. Chick H (1908) An investigation of the laws of disinfection. J Hyg 8(1):92–158PubMedCrossRefGoogle Scholar
  12. Davey KR, Lin SH, Wood DG (1978) The effect of pH on continuous high-temperature/short-time sterilization of liquid foods. AICHE J 24(3):537–540CrossRefGoogle Scholar
  13. Dolan KD, Valdramidis VP, Mishra DK (2013) Parameter estimation for dynamic microbial inactivation: which model, which precision? Food Control 29(2):401–408CrossRefGoogle Scholar
  14. Fernández PS, Ocio MJ, Rodrigo F et al (1996) Mathematical model for the combined effect of temperature and pH on the thermal resistance of Bacillus stearothermophilus and Clostridium sporogenes spores. Int J Food Microbiol 32(1–2):225–233PubMedCrossRefGoogle Scholar
  15. Gaillard S, Leguerinel I, Mafart P (1998a) Modelling combined effects of temperature and pH on the heat resistance of spores of Bacillus cereus. Food Microbiol 15(6):625–630CrossRefGoogle Scholar
  16. Gaillard S, Leguerinel I, Mafart P (1998b) Model for combined effects of temperature, pH and water activity on thermal inactivation of Bacillus cereus spores. J Food Sci 63(5):887–889CrossRefGoogle Scholar
  17. Geeraerd AH, Herremans CH, Van Impe JF (2000) Structural model requirements to describe microbial inactivation during a mild heat treatment. Int J Food Microbiol 59(3):185–209PubMedCrossRefGoogle Scholar
  18. Geeraerd AH, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-loglinear microbial survivor curves. Int J Food Microbiol 102(1):95–105PubMedCrossRefGoogle Scholar
  19. González I, López M, Martínez S et al (1999) Thermal inactivation of Bacillus cereus spores formed at different temperatures. Int J Food Microbiol 51(1):81–84PubMedCrossRefGoogle Scholar
  20. Grant IR, Hitchings EI, McCartney A et al (2002) Effect of commercial-scale high-temperature, short-time pasteurization on the viability of Mycobacterium paratuberculosis in naturally infected cows’ milk. Appl Env Microbiol 68(2):602–603CrossRefGoogle Scholar
  21. Humpheson L, Adams MR, Anderson WA et al (1998) Biphasic thermal inactivation kinetics in Salmonella enteridis PT4. Appl Environ Microbiol 64(2):459–464PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jarvis NA, O’Bryan CA, Dawoud M et al (2016) An overview of Salmonella thermal destruction during food processing and preparation. Food Control 68:280–290CrossRefGoogle Scholar
  23. Juneja VK, Marmer BS, Phillips JG et al (1995) Influence of the intrinsic properties of food on thermal inactivation of spores of nonproteolytic Clostridium botulinum: development of a predictive model. J Food Saf 15(4):349–363CrossRefGoogle Scholar
  24. Juneja VK, Eblen BS, Marks HM (2001) Modeling non-linear survival curves to calculate thermal inactivation of Salmonella in poultry of different fat levels. Int J Food Microbiol 70(1–2):37–51PubMedCrossRefGoogle Scholar
  25. Juneja VK, Gonzales-Barron U, Butler F et al (2013) Predictive thermal inactivation model for the combined effect of temperature, cinnamaldehyde and carvacrol on starvation-stressed multiple Salmonella sterotypes in ground chicken. Int J Food Microbiol 165(2):184–199PubMedCrossRefGoogle Scholar
  26. Juneja V, Mukhopadhyay S, Marks H (2014) Predictive thermal inactivation model for effects and interactions of temperature, NaCl, sodium pyrophosphate, and sodium lactate on Listeria monocytogenes in ground beef. Food Bioprocess Technol 7(2):437–446CrossRefGoogle Scholar
  27. Knirsch MC, dos Santos CA, de Oliveira Soares Vincente AAM et al (2010) Ohmic heating – a review. Trends Food Sci Technol 21(9):436–441CrossRefGoogle Scholar
  28. Knoerzer K, Juliano P, Gladman S et al (2007) A computational model for temperature and sterility distributions in a pilot-scale high pressure high-temperature process. AICHE J 53(11):2996–3010CrossRefGoogle Scholar
  29. Krishnamurthy K, Khurana HK, Jun S et al (2008) Infrared heating in food processes: an overview. Compr Rev Food Sci Food Saf 7(1):2–13CrossRefGoogle Scholar
  30. Lemaire V, Cerf O, Audurier A (1989) Thermal resistance of Listeria monocytogens. Annales de Recherches Vétérinaires, INRA Editions 20(4):493–500Google Scholar
  31. Luechapattanaporn K, Wang Y, Wang J et al (2004) Microbial safety in radio-frequency processing of packaged foods. J Food Sci 69(7):201–206CrossRefGoogle Scholar
  32. Mafart P, Leguerinel I (1998) Modeling combined effects of temperature and pH on heat resistance of spores by a linear-Bigelow equation. J Food Sci 63(1):6–8CrossRefGoogle Scholar
  33. Mafart P, Couvert O, Gaillard S et al (2002) On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int J Food Microbiol 72(1–2):107–113PubMedCrossRefGoogle Scholar
  34. Mafart P, Leguerinel I, Coroller L et al (2012) Modelling microbial resistance during thermal treatment: secondary models. In: Valdramidis VP, Van Impe JF (eds) Progress on quantitative approaches for thermal food processing. Nova Scientific Publishers, Inc., New York, pp 99–119Google Scholar
  35. McCann MS, Sheridan JJ, McDowell DA et al (2006) Effects of steam pasteurisation on Salmonella Typhimurium DT104 and Escherichia coli O157:H7 surface inoculated onto beef, pork and chicken. J Food Eng 76(1):32–40CrossRefGoogle Scholar
  36. Peleg M, Cole MB (1998) Reinterpretation of microbial survival curves. Crit Rev Food Sci Nutr 38(5):353–380PubMedCrossRefGoogle Scholar
  37. Reichart O (1994) Modelling the destruction of Escherichia coli on the base of reaction kinetics. Int J Food Microbiol 23(3–4):449–465PubMedCrossRefGoogle Scholar
  38. Ross T, McMeekin TA (1994) Predictive microbiology. Int J Food Microbiol 23(3–4):241–264PubMedCrossRefGoogle Scholar
  39. Rosso L, Lobry JR, Bajar S et al (1995) Convinient model to describe the combined effect of temperature and pH on microbial growth. Appl Env Microbiol 61(2):610–616CrossRefGoogle Scholar
  40. Santillana Farakos SM, Frank JF, Schaffner DW (2013) Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture foods. Int J Food Microbiol 166(2):280–293CrossRefGoogle Scholar
  41. Schoolfield RM, Sharpe PJH, Magnuon CE (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol 88(4):719–731PubMedCrossRefGoogle Scholar
  42. Simpson SG, Williams MC (1974) An analysis of high temperature/short time sterilization during laminar flow. J Food Sci 39(5):1047–1054CrossRefGoogle Scholar
  43. Sörqvist S (2003) Heat resistance in liquids of Enterococcus spp., Listeria spp., Escherichia coli, Yersinia enterocolitica, Salmonella spp. and Campylobacter spp. Acta Vet Scand 44(1–2):1–19PubMedPubMedCentralCrossRefGoogle Scholar
  44. Splittstoesser, DF, McLellan MR, Churey JJ (1995) Heat resistance of Escherichia coli O157:H7 in Apple Juice. J Food Prot 59(3):226–229PubMedCrossRefGoogle Scholar
  45. Tang J (2015) Unlocking potentials of microwaves for food safety and quality. J Food Sci 80(8):E1776–E1793PubMedPubMedCentralCrossRefGoogle Scholar
  46. Van Impe JF, Vercammen D, Van Derlinden E (2013) Towards a next generation of predictive models: a systems biology primer. Food Control 29(2):336–342CrossRefGoogle Scholar
  47. Villa-Rojas R, Tang J, Wang S et al (2013) Thermal inactivation of Salmonella Enteritidis PT 30 in almond kernels as influenced by water activity. J Food Prot 76(1):26–32PubMedCrossRefGoogle Scholar
  48. Xezones H, Hutchings IJ (1965) Thermal resistance of Cl. Botulinum spores as affected by fundamental food constituents. Food Technol 19:113–115Google Scholar
  49. Xiong R, Xie G, Edmondson AE, Sheard MA (1999) A mathematical model for bacterial inactivation. Int J Food Microbiol 46(1):45–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Simen Akkermans
    • 1
    • 2
    • 3
  • Cindy Smet
    • 1
    • 2
    • 3
  • Vasilis Valdramidis
    • 4
    • 5
  • Jan Van Impe
    • 1
    • 2
    • 3
    Email author
  1. 1.BioTeC, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU LeuvenGhentBelgium
  2. 2.OPTEC, Optimization in Engineering Center-of-Excellence, KU LeuvenLeuvenBelgium
  3. 3.CPMF2, Flemish Cluster Predictive Microbiology in Foods – www.cpmf2.beGhentBelgium
  4. 4.Department of Food Sciences and Nutrition, Faculty of Health SciencesUniversity of MaltaMsidaMalta
  5. 5.Department of Molecular Medicine and BiobankingUniversity of MaltaMsidaMalta

Personalised recommendations