Advertisement

Ultrasound Molecular Imaging of Cancer: Design and Formulation Strategies of Targeted Contrast Agents

  • Alexander L. KlibanovEmail author
Chapter
  • 84 Downloads
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)

Abstract

Gas-filled particles (microbubbles) can be prepared and stabilized for intravascular use as contrast agents in ultrasound imaging. Microbubbles are used in clinics as blood pool contrast materials for the past two decades. Shell of these bubbles is made of biocompatible and biodegradable lipids, proteins, and/or polymers. Gas core is air, or, lately, a perfluorinated gas, poorly soluble in water and blood. Making them useful for molecular targeting and molecular imaging in oncology is accomplished by decorating the shell of these particles with targeting ligands, that will selectively bind to the specific markers of tumor vasculature. In this review we discuss the formulation strategy for microbubble preparation, the logic of bubble shell selection, coupling tools that are used for the attachment of targeting ligands, and examples of the application of gas-filled bubbles for molecular imaging in oncology.

Notes

Acknowledgments

A.L. Klibanov is supported in part via NIH R01 EB023055, awarded by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health. The content of this publication is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL (2010) scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol 45(10):579–585.  https://doi.org/10.1097/RLI.0b013e3181efd581CrossRefPubMedGoogle Scholar
  2. 2.
    Averkiou M, Powers J, Skyba D, Bruce M, Jensen S (2003) Ultrasound contrast imaging research. Ultrasound Q 19(1):27–37CrossRefPubMedGoogle Scholar
  3. 3.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645.  https://doi.org/10.1126/science.1127344CrossRefPubMedGoogle Scholar
  4. 4.
    Bogdanov AA Jr, Klibanov AL, Torchilin VP (1988) Protein immobilization on the surface of liposomes via carbodiimide activation in the presence of N-hydroxysulfosuccinimide. FEBS Lett 231(2):381–384CrossRefPubMedGoogle Scholar
  5. 5.
    Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97(26):14608–14613.  https://doi.org/10.1073/pnas.97.26.14608CrossRefPubMedGoogle Scholar
  6. 6.
    Cheng KT (2004) Perflexane-lipid microspheres. In: Molecular imaging and contrast agent database (MICAD). Bethesda, MDGoogle Scholar
  7. 7.
    Chlon C, Guedon C, Verhaagen B, Shi WT, Hall CS, Lub J, Bohmer MR (2009) Effect of molecular weight, crystallinity, and hydrophobicity on the acoustic activation of polymer-shelled ultrasound contrast agents. Biomacromol 10(5):1025–1031.  https://doi.org/10.1021/bm801243uCrossRefGoogle Scholar
  8. 8.
    Ellegala DB, Leong-Poi H, Carpenter JE, Klibanov AL, Kaul S, Shaffrey ME, Sklenar J, Lindner JR (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108(3):336–341.  https://doi.org/10.1161/01.CIR.0000080326.15367.0CCrossRefPubMedGoogle Scholar
  9. 9.
    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527(7579):499–502.  https://doi.org/10.1038/nature16066CrossRefPubMedGoogle Scholar
  10. 10.
    Fan X, Wang L, Guo Y, Tu Z, Li L, Tong H, Xu Y, Li R, Fang K (2015) Ultrasonic nanobubbles carrying anti-PSMA nanobody: construction and application in prostate cancer-targeted imaging. PLoS One 10(6):e0127419.  https://doi.org/10.1371/journal.pone.0127419CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fisher NG, Christiansen JP, Klibanov A, Taylor RP, Kaul S, Lindner JR (2002) Influence of microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am Coll Cardiol 40(4):811–819CrossRefPubMedGoogle Scholar
  12. 12.
    Fokong S, Theek B, Wu Z, Koczera P, Appold L, Jorge S, Resch-Genger U, van Zandvoort M, Storm G, Kiessling F, Lammers T (2012) Image-guided, targeted and triggered drug delivery to tumors using polymer-based microbubbles. J Control Release 163(1):75–81.  https://doi.org/10.1016/j.jconrel.2012.05.007CrossRefPubMedGoogle Scholar
  13. 13.
    Forsberg F, Piccoli CW, Liu JB, Rawool NM, Merton DA, Mitchell DG, Goldberg BB (2002) Hepatic tumor detection: MR imaging and conventional US versus pulse-inversion harmonic US of NC100100 during its reticuloendothelial system-specific phase. Radiology 222(3):824–829.  https://doi.org/10.1148/radiol.2223001786CrossRefPubMedGoogle Scholar
  14. 14.
    Fritz TA, Unger EC, Sutherland G, Sahn D (1997) Phase I clinical trials of MRX-115. A new ultrasound contrast agent. Invest Radiol 32(12):735–740Google Scholar
  15. 15.
    Gao Y, Hernandez C, Yuan HX, Lilly J, Kota P, Zhou H, Wu H, Exner AA (2017) Ultrasound molecular imaging of ovarian cancer with CA-125 targeted nanobubble contrast agents. Nanomedicine 13(7):2159–2168.  https://doi.org/10.1016/j.nano.2017.06.001CrossRefGoogle Scholar
  16. 16.
    Garg S, Thomas AA, Borden MA (2013) The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials 34(28):6862–6870.  https://doi.org/10.1016/j.biomaterials.2013.05.053CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hauff P, Fritzsch T, Reinhardt M, Weitschies W, Luders F, Uhlendorf V, Heldmann D (1997) Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission. Invest Radiol 32(2):94–99CrossRefPubMedGoogle Scholar
  18. 18.
    Helfield BL, Huo X, Williams R, Goertz DE (2012) The effect of preactivation vial temperature on the acoustic properties of definity. Ultrasound Med Biol 38(7):1298–1305.  https://doi.org/10.1016/j.ultrasmedbio.2012.03.005CrossRefPubMedGoogle Scholar
  19. 19.
    Hernot S, Unnikrishnan S, Du Z, Shevchenko T, Cosyns B, Broisat A, Toczek J, Caveliers V, Muyldermans S, Lahoutte T, Klibanov AL, Devoogdt N (2012) Nanobody-coupled microbubbles as novel molecular tracer. J Control Release 158(2):346–353.  https://doi.org/10.1016/j.jconrel.2011.12.007CrossRefPubMedGoogle Scholar
  20. 20.
    Hughes MS, McCarthy JE, Marsh JN, Arbeit JM, Neumann RG, Fuhrhop RW, Wallace KD, Znidersic DR, Maurizi BN, Baldwin SL, Lanza GM, Wickline SA (2007) Properties of an entropy-based signal receiver with an application to ultrasonic molecular imaging. J Acoust Soc Am 121(6):3542–3557.  https://doi.org/10.1121/1.2722050CrossRefPubMedGoogle Scholar
  21. 21.
    Hvattum E, Uran S, Sandbaek AG, Karlsson AA, Skotland T (2006) Quantification of phosphatidylserine, phosphatidic acid and free fatty acids in an ultrasound contrast agent by normal-phase high-performance liquid chromatography with evaporative light scattering detection. J Pharm Biomed Anal 42(4):506–512.  https://doi.org/10.1016/j.jpba.2006.04.027CrossRefPubMedGoogle Scholar
  22. 22.
    Kallinowski F, Schlenger KH, Runkel S, Kloes M, Stohrer M, Okunieff P, Vaupel P (1989) Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res 49(14):3759–3764PubMedGoogle Scholar
  23. 23.
    Keller MW, Glasheen W, Kaul S (1989) Albunex: a safe and effective commercially produced agent for myocardial contrast echocardiography. J Am Soc Echocardiogr 2(1):48–52CrossRefPubMedGoogle Scholar
  24. 24.
    Klibanov AL, Hughes MS, Marsh JN, Hall CS, Miller JG, Wible JH, Brandenburger GH (1997) Targeting of ultrasound contrast material. An in vitro feasibility study. Acta Radiol Suppl 412:113–120PubMedGoogle Scholar
  25. 25.
    Koczera P, Appold L, Shi Y, Liu M, Dasgupta A, Pathak V, Ojha T, Fokong S, Wu Z, van Zandvoort M, Iranzo O, Kuehne AJC, Pich A, Kiessling F, Lammers T (2017) PBCA-based polymeric microbubbles for molecular imaging and drug delivery. J Control Release 259:128–135.  https://doi.org/10.1016/j.jconrel.2017.03.006CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Krupka TM, Solorio L, Wilson RE, Wu H, Azar N, Exner AA (2010) Formulation and characterization of echogenic lipid-pluronic nanobubbles. Mol Pharm 7(1):49–59.  https://doi.org/10.1021/mp9001816CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Leighton TG (1994) The acoustic bubble. Academic Press, LondonGoogle Scholar
  28. 28.
    Leong-Poi H, Song J, Rim SJ, Christiansen J, Kaul S, Lindner JR (2002) Influence of microbubble shell properties on ultrasound signal: implications for low-power perfusion imaging. J Am Soc Echocardiogr 15(10 Pt 2):1269–1276CrossRefPubMedGoogle Scholar
  29. 29.
    Lindner JR, Song J, Christiansen J, Klibanov AL, Xu F, Ley K (2001) Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104(17):2107–2112CrossRefGoogle Scholar
  30. 30.
    Liu X, Gong P, Song P, Xie F, Miller Ii AL, Chen S, Lu L (2018) Fast functionalization of ultrasound microbubbles using strain promoted click chemistry. Biomater Sci 6(3):623–632.  https://doi.org/10.1039/c8bm00004bCrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lu E, Wagner WR, Schellenberger U, Abraham JA, Klibanov AL, Woulfe SR, Csikari MM, Fischer D, Schreiner GF, Brandenburger GH, Villanueva FS (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108(1):97–103.  https://doi.org/10.1161/01.CIR.0000079100.38176.83CrossRefPubMedGoogle Scholar
  32. 32.
    Palmowski M, Morgenstern B, Hauff P, Reinhardt M, Huppert J, Maurer M, Woenne EC, Doerk S, Ladewig G, Jenne JW, Delorme S, Grenacher L, Hallscheidt P, Kauffmann GW, Semmler W, Kiessling F (2008) Pharmacodynamics of streptavidin-coated cyanoacrylate microbubbles designed for molecular ultrasound imaging. Invest Radiol 43(3):162–169.  https://doi.org/10.1097/RLI.0b013e31815a251bCrossRefPubMedGoogle Scholar
  33. 33.
    Perera R, de Leon A, Wang X, Wang Y, Ramamurthy G, Peiris P, Abenojar E, Basilion JP, Exner AA (2019) Real time ultrasound molecular imaging of prostate cancer with PSMA-targeted nanobubbles. bioRxiv.  https://doi.org/10.1101/634444
  34. 34.
    Perflutren (2001) http://www.definityimaging.com. Accessed 05 June 2019
  35. 35.
    Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Passantino L, Schneider M (2010) BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 45(2):89–95.  https://doi.org/10.1097/RLI.0b013e3181c5927cCrossRefPubMedGoogle Scholar
  36. 36.
    Rychak JJ, Graba J, Cheung AM, Mystry BS, Lindner JR, Kerbel RS, Foster FS (2007) Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6(5):289–296CrossRefPubMedGoogle Scholar
  37. 37.
    Schneider M, Arditi M, Barrau MB, Brochot J, Broillet A, Ventrone R, Yan F (1995) BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 30(8):451–457CrossRefPubMedGoogle Scholar
  38. 38.
    Schneider M, Brochot J, Puginier J, Yan F (1993) Stable microbubble suspensions comprising saturated phospholipids for ultrasound echography. USA Patent US5686060AGoogle Scholar
  39. 39.
    Senior R, Monaghan M, Main ML, Zamorano JL, Tiemann K, Agati L, Weissman NJ, Klein AL, Marwick TH, Ahmad M, DeMaria AN, Zabalgoitia M, Becher H, Kaul S, Udelson JE, Wackers FJ, Walovitch RC, Picard MH, Ramp-1 and Ramp-2 Investigators (2009) Detection of coronary artery disease with perfusion stress echocardiography using a novel ultrasound imaging agent: two Phase 3 international trials in comparison with radionuclide perfusion imaging. Eur J Echocardiogr 10(1):26–35.  https://doi.org/10.1093/ejechocard/jen321
  40. 40.
    Shen Y, Lv W, Yang H, Cai W, Zhao P, Zhang L, Zhang J, Yuan L, Duan Y (2019) FA-NBs-IR780: Novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett 455:14–25.  https://doi.org/10.1016/j.canlet.2019.04.023CrossRefPubMedGoogle Scholar
  41. 41.
    Slagle CJ, Thamm DH, Randall EK, Borden MA (2018) Click conjugation of cloaked peptide ligands to microbubbles. Bioconjug Chem 29(5):1534–1543.  https://doi.org/10.1021/acs.bioconjchem.8b00084CrossRefPubMedGoogle Scholar
  42. 42.
    Smeenge M, Tranquart F, Mannaerts CK, de Reijke TM, van de Vijver MJ, Laguna MP, Pochon S, de la Rosette J, Wijkstra H (2017) First-in-human ultrasound molecular imaging with a VEGFR2-specific ultrasound molecular contrast agent (BR55) in prostate cancer: a safety and feasibility pilot study. Invest Radiol 52(7):419–427.  https://doi.org/10.1097/RLI.0000000000000362CrossRefGoogle Scholar
  43. 43.
    Smith MD, Elion JL, McClure RR, Kwan OL, DeMaria AN (1989) Left heart opacification with peripheral venous injection of a new saccharide echo contrast agent in dogs. J Am Coll Cardiol 13(7):1622–1628CrossRefPubMedGoogle Scholar
  44. 44.
    Spivak I, Rix A, Schmitz G, Fokong S, Iranzo O, Lederle W, Kiessling F (2016) Low-dose molecular ultrasound imaging with E-selectin-targeted PBCA microbubbles. Mol Imaging Biol 18(2):180–190.  https://doi.org/10.1007/s11307-015-0894-9CrossRefPubMedGoogle Scholar
  45. 45.
    Straub JA, Chickering DE, Church CC, Shah B, Hanlon T, Bernstein H (2005) Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography. J Control Release 108(1):21–32.  https://doi.org/10.1016/j.jconrel.2005.07.020CrossRefPubMedGoogle Scholar
  46. 46.
    Streeter JE, Gessner RC, Tsuruta J, Feingold S, Dayton PA (2011) Assessment of molecular imaging of angiogenesis with three-dimensional ultrasonography. Mol Imaging 10(6):460–468CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Szabo TL (2014) Diagnostic ultrasound imaging: inside out, 2nd edn. Academic Press, Oxford., p 25Google Scholar
  48. 48.
    Unnikrishnan S, Du Z, Diakova G, Klibanov AL (2018) Formation of microbubbles for targeted ultrasound contrast imaging: practical translation considerations. Langmuir.  https://doi.org/10.1021/acs.langmuir.8b03551CrossRefGoogle Scholar
  49. 49.
    Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, Brandenburger GH, Wagner WR (1998) Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 98(1):1–5CrossRefPubMedGoogle Scholar
  50. 50.
    Villanueva FS, Lu E, Bowry S, Kilic S, Tom E, Wang J, Gretton J, Pacella JJ, Wagner WR (2007) Myocardial ischemic memory imaging with molecular echocardiography. Circulation 115(3):345–352.  https://doi.org/10.1161/CIRCULATIONAHA.106.633917CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang S, Herbst EB, Mauldin FW Jr, Diakova GB, Klibanov AL, Hossack JA (2016) Ultra-low-dose ultrasound molecular imaging for the detection of angiogenesis in a mouse murine tumor model: how little can we see? Invest Radiol 51(12):758–766.  https://doi.org/10.1097/RLI.0000000000000310CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Willmann JK, Bonomo L, Testa AC, Rinaldi P, Rindi G, Valluru KS, Petrone G, Martini M, Lutz AM, Gambhir SS (2017) Ultrasound molecular imaging with BR55 in patients with breast and ovarian lesions: first-in-human results. J Clin Oncol 35(19):2133–2140.  https://doi.org/10.1200/JCO.2016.70.8594CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS (2010) Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 51(3):433–440.  https://doi.org/10.2967/jnumed.109.068007CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wu H, Rognin NG, Krupka TM, Solorio L, Yoshiara H, Guenette G, Sanders C, Kamiyama N, Exner AA (2013) Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med Biol 39(11):2137–2146.  https://doi.org/10.1016/j.ultrasmedbio.2013.05.007CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yeh JS, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P (2015) A targeting microbubble for ultrasound molecular imaging. PLoS One 10(7):e0129681.  https://doi.org/10.1371/journal.pone.0129681CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756PubMedGoogle Scholar
  57. 57.
    Zhang H, Tam S, Ingham ES, Mahakian LM, Lai CY, Tumbale SK, Teesalu T, Hubbard NE, Borowsky AD, Ferrara KW (2015) Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble. Biomaterials 56:104–113.  https://doi.org/10.1016/j.biomaterials.2015.03.043CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zlitni A, Janzen N, Foster FS, Valliant JF (2014) Catching bubbles: targeting ultrasound microbubbles using bioorthogonal inverse-electron-demand Diels-Alder reactions. Angew Chem Int Ed Engl 53(25):6459–6463.  https://doi.org/10.1002/anie.201402473CrossRefPubMedGoogle Scholar
  59. 59.
    Zlitni A, Yin M, Janzen N, Chatterjee S, Lisok A, Gabrielson KL, Nimmagadda S, Pomper MG, Foster FS, Valliant JF (2017) Development of prostate specific membrane antigen targeted ultrasound microbubbles using bioorthogonal chemistry. PLoS One 12(5):e0176958.  https://doi.org/10.1371/journal.pone.0176958CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations