Ultrasound Imaging

  • Georg SchmitzEmail author
  • Stefanie Dencks
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)


Ultrasound imaging plays an important role in oncological imaging for more than five decades now. It can be applied in all tissues that are not occluded by bone or gas-filled regions. The quality of ultrasound images benefitted strongly from improved electronics and increased computational power. To the morphological imaging, several functional imaging methods were added: Flow visualization became possible by Doppler techniques and as a recent addition the elastic properties of tissues can be imaged by elastographic methods with transient shear wave imaging. In the beginning of molecular imaging, ultrasound with its contrast based on mechanical tissue properties was an unlikely candidate to play a role. However, with contrast agents consisting of micrometer-sized gas bubbles, which can be imaged with high sensitivity, ligands addressing targets in the vascular wall could be used. Because even single bubbles can be detected, this led to various ultrasound molecular imaging techniques and the ongoing development of clinical molecular contrast media. In this chapter, the basic properties of ultrasonic imaging like its contrast mechanisms and spatiotemporal resolution are discussed. The image formation and its ongoing change from line-oriented scanning to full-volume reconstructions are explained. Then, the ultrasound contrast media and imaging techniques are introduced and emerging new methods like super-resolution vascular imaging demonstrate the ongoing development in this field.


Ultrasound imaging Sonography Ultrasound beamforming Ultrasound reconstruction Ultrasound contrast agents Microbubbles Ultrasound super-resolution imaging Ultrasound localization microscopy 


  1. 1.
    Ackermann D, Schmitz G (2016) Detection and tracking of multiple microbubbles in ultrasound B-Mode images. IEEE Trans Ultrason Ferroelectr Freq Control 63(1):72–82CrossRefPubMedGoogle Scholar
  2. 2.
    Averkiou MA, Roundhill DN, Powers JE (1997) A new imaging technique based on the nonlinear properties of tissues. In: An international symposium on 1997 IEEE ultrasonics symposium proceedings (Cat. No.97CH36118)Google Scholar
  3. 3.
    Bauer A, Schlief R, Zomack M, Urbank A, Niendorf HP (1997) Acoustically stimulated microbubbles in diagnostic ultrasound: properties and implications for diagnostic use. Advances in Echo Imaging Using Contrast Enhancement. N. C. Nanda, R. Schlief and B. B. Goldberg. Dordrecht, Springer Netherlands, pp 669–684Google Scholar
  4. 4.
    Burns PN, Hilpert P, Goldberg BB (1990) Intravenous contrast agent for ultrasound Doppler: in vivo measurement of small tumor vessel dose-response. In: Proceedings of the twelfth annual international conference of the IEEE engineering in medicine and biology society, vol 12(1), pp 322–324Google Scholar
  5. 5.
    Christensen-Jeffries K, Browning RJ, Tang MX, Dunsby C, Eckersley RJ (2015) In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles. IEEE Trans Med Imaging 34(2):433–440CrossRefPubMedGoogle Scholar
  6. 6.
    Couture O, Besson B, Montaldo G, Fink M, Tanter M (2011) Microbubble ultrasound super-localization imaging (MUSLI). IEEE Int Ultrasonics Symposium 2011:1285–1287Google Scholar
  7. 7.
    Dayton PA, Ferrara KW (2002) Targeted imaging using ultrasound. J Magn Reson Imaging 16:362–377CrossRefPubMedGoogle Scholar
  8. 8.
    Dencks S, Ackermann D, Schmitz G (2016) Evaluation of bubble tracking algorithms for super-resolution imaging of microvessels. In: 2016 IEEE international ultrasonics symposium (IUS).
  9. 9.
    Dencks S, Piepenbrock M, Schmitz G, Opacic T, Kiessling F (2017). Determination of adequate measurement times for super-resolution characterization of tumor vascularization. 2017 IEEE International Ultrasonics Symposium (IUS)Google Scholar
  10. 10.
    Dencks S, Piepenbrock M, Opacic T, Krauspe B, Stickeler E, Kiessling F, Schmitz G (2019) clinical pilot application of super-resolution US imaging in breast cancer. IEEE Trans Ultrason Ferroelectr Freq Control 66(3):517–526CrossRefPubMedGoogle Scholar
  11. 11.
    Duck FA (1990) Physical Properties of Tissue. Academic Press, New YorkGoogle Scholar
  12. 12.
    Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527(7579):499–502CrossRefPubMedGoogle Scholar
  13. 13.
    Fatemi M, Greenleaf JF (1998) Ultrasound-stimulated vibro-acoustic spectrography. Science 280(5360):82–85CrossRefPubMedGoogle Scholar
  14. 14.
    Foiret J, Zhang H, Ilovitsh T, Mahakian L, Tam S, Ferrara KW (2017) Ultrasound localization microscopy to image and assess microvasculature in a rat kidney. Scientif Reports 7(1):13662CrossRefGoogle Scholar
  15. 15.
    Fokong S, Siepmann M, Liu Z, Schmitz G, Kiessling F, Gätjens J (2011) Advanced characterization and refinement of poly n-Butyl cyanoacrylate microbubbles for ultrasound imaging. Ultrasound Med Biol 37(10):1622–1634CrossRefPubMedGoogle Scholar
  16. 16.
    Freeman S, Li PC, O’Donnell M (1995) Retrospective dynamic transmit focusingGoogle Scholar
  17. 17.
    Gennisson JL, Deffieux T, Fink M, Tanter M (2013) Ultrasound elastography: principles and techniques. Diagnostic Intervent Imaging 94(5):487–495CrossRefGoogle Scholar
  18. 18.
    Gramiak R, Shah PM (1968) Echocardiography of the aortic root. Invest Radiol 3:356–366CrossRefPubMedGoogle Scholar
  19. 19.
    Helfield B (2019) A review of phospholipid encapsulated ultrasound contrast agent microbubble physics. Ultrasound Med Biol 45(2):282–300CrossRefPubMedGoogle Scholar
  20. 20.
    Hingot V, Errico C, Tanter M, Couture O (2017) Subwavelength motion-correction for ultrafast ultrasound localization microscopy. Ultrasonics 77:17–21CrossRefPubMedGoogle Scholar
  21. 21.
    Hope Simpson D, Burns PN, Averkiou MA (2001) Techniques for perfusion imaging with microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 48(6):1483–1494CrossRefGoogle Scholar
  22. 22.
    Simpson DH, Chin CT, Burns PN (1999) Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans. Ultrason., Ferroelect Freq Contr 46(2), 372–382Google Scholar
  23. 23.
    Jensen JA (1996) Estimation of blood velocities using ultrasound: a signal processing approach. Cambridge University Press, New YorkGoogle Scholar
  24. 24.
    Jensen JA (1996) Field: a program for simulating ultrasound systems. In: 10th Nordic-Baltic conference on biomedical imaging published in medical & biological engineering & computing 34, 351–353Google Scholar
  25. 25.
    Jensen JA, Holm O, Jensen LJ, Bendsen H, Nikolov SI, Tomov BG, Munk P, Hansen M, Salomonsen K, Hansen J, Gormsen K, Pedersen HM, Gammelmark KL (2005) Ultrasound research scanner for real-time synthetic aperture data acquisition. IEEE Trans Ultrason Ferroelectr Freq Control 52(5):881–891CrossRefPubMedGoogle Scholar
  26. 26.
    Jensen JA, Svendsen NB (1992) Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control 39(2):262–267CrossRefPubMedGoogle Scholar
  27. 27.
    Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discovery 3:527–532CrossRefPubMedGoogle Scholar
  28. 28.
    Lindner JR, Song J, Xu F, Klibanov AL, Singbartl K, Ley K, Kaul S (2000) Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated Leukocytes. Circulation 102(22):2745–2750CrossRefGoogle Scholar
  29. 29.
    Lu JY (1998) Experimental study of high frame rate imaging with limited diffraction beams. IEEE Trans Ultrason Ferroelectr Freq Control 45(1):84–97CrossRefPubMedGoogle Scholar
  30. 30.
    Mace E, Montaldo G, Cohen I, Baulac M, Fink M, Tanter M (2011) Functional ultrasound imaging of the brain. Nat Methods 8(8):662–664CrossRefPubMedGoogle Scholar
  31. 31.
    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S, Lohse D (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. J Acoustical Soc Am 118(6):3499–3505CrossRefGoogle Scholar
  32. 32.
    Miller DL, Quddus J (2000) Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. PNAS 97(18):10179–10184CrossRefPubMedGoogle Scholar
  33. 33.
    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M (2009) Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 56(3):489–506CrossRefGoogle Scholar
  34. 34.
    Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE (2001) On the feasibility of remote palpation using acoustic radiation force. J Acoustical Soc Am 110(1):625–634CrossRefGoogle Scholar
  35. 35.
    Opacic T, Dencks S, Theek B, Piepenbrock M, Ackermann D, Rix A, Lammers T, Stickeler E, Delorme S, Schmitz G, Kiessling F (2018) Motion model ultrasound localization microscopy for preclinical and clinical multiparametric tumor characterization. Nat Commun 9(1):1527CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13(2):111–134CrossRefPubMedGoogle Scholar
  37. 37.
    Phillips P (2001) Contrast pulse sequences (CPS): imaging nonlinear microbubbles. In: Proc. IEEE ultrasonics symposium, pp 1739–1745Google Scholar
  38. 38.
    Rayleigh L (1917) On the pressure development in a liquid during the collapse of a spherical cavity. Philos. Mag 32(S. 8):94–98Google Scholar
  39. 39.
    Sandrin L, Tanter M, Catheline S, Fink M (2002) Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 49(4):426–435CrossRefGoogle Scholar
  40. 40.
    Schrope BA, Newhouse VL (1993) Second harmonic ultrasonic blood perfusion measurement. Ultrasound Med Biol 19(7):567–579CrossRefPubMedGoogle Scholar
  41. 41.
    Sehgal CM (1993) Quantitative relationship between tissue composition and scattering of ultrasound. J Acoust Soc Am 94(4):1944–1951CrossRefPubMedGoogle Scholar
  42. 42.
    Siepmann M, Bzyl J, Palmowski M, Kiessling F, Schmitz G (2011) Imaging tumor vascularity by tracing single microbubbles. IEEE International Ultrasonics Symposium. Orlando, Florida, pp 1906–1909Google Scholar
  43. 43.
    Smith SW, Pavy HR, von Ramm OT (1991) High-speed ultrasound volumetric imaging system. I. Transducer design and beam steering. IEEE Trans Ultrason Ferroelectr Freq Control 38(2):100–108CrossRefPubMedGoogle Scholar
  44. 44.
    Song P, Trzasko JD, Manduca A, Huang R, Kadirvel R, Kallmes DF, Chen S (2018) Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking. IEEE Trans Ultrason Ferroelectr Freq Control 65(2):149–167CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sontum PC (2008) Physicochemical characteristics of Sonazoid™, a new contrast agent for ultrasound imaging. Ultrasound Med Biol 34(5):824–833CrossRefPubMedGoogle Scholar
  46. 46.
    Szabo TL (2014) Diagnostic ultrasound imaging: inside out Boston, Academic PressGoogle Scholar
  47. 47.
    Tiemann K, Pohl C, Schlosser T, Goenechea J, Bruce M, Veltmann C, Kuntz S, Bangard M, Becher H (2000) Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of nonmoving microbubbles. Ultrasound Med Biol 26(7):1161CrossRefPubMedGoogle Scholar
  48. 48.
    Van Sloun RJ, Solomon O, Eldar YC, Wijkstra H, Mischi M (2017) Sparsity-driven super-resolution in clinical contrast-enhanced ultrasound. In: IEEE international ultrasonics symposiumGoogle Scholar
  49. 49.
    von Ramm OT, Smith SW, Pavy HR (1991) High-speed ultrasound volumetric imaging system. II. Parallel processing and image display. IEEE Trans Ultrason Ferroelectr Freq Control 38(2):109–115CrossRefGoogle Scholar
  50. 50.
    Waters KR, Mobley J, Miller JG (2005) Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion. IEEE Trans Ultrason Ferroelectr Freq Control 52(5):822–823CrossRefPubMedGoogle Scholar
  51. 51.
    Wild JJ, Reid JM (1952) Application of echo-ranging techniques to the determination of structure of biological tissues. Science 115(2983):226–230CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BochumGermany

Personalised recommendations