Advertisement

(Hybrid) SPECT and PET Technologies

  • Teresa Nolte
  • Nicolas Gross-Weege
  • Volkmar SchulzEmail author
Chapter
  • 49 Downloads
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)

Abstract

SPECT and PET are nuclear tomographic imaging modalities that visualize functional information based on the accumulation of radioactive tracer molecules. However, SPECT and PET lack anatomical information, which has motivated their combination with an anatomical imaging modality such as CT or MRI. This chapter begins with an overview over the fundamental physics of SPECT and PET followed by a presentation of the respective detector technologies, including detection requirements, principles and different detector concepts. The reader is subsequently provided with an introduction into hybrid imaging concepts, before a dedicated section presents the challenges that arise when hybridizing SPECT or PET with MRI, namely, mutual distortions of the different electromagnetic fields in MRI on the nuclear imaging system and vice versa. The chapter closes with an overview about current hybrid imaging systems of both clinical and preclinical kind. Finally, future developments in hybrid SPECT and PET technology are discussed.

References

  1. 1.
    Czernin J, Israel O, Herrmann K et al (2017) Clinical applications of PET/CT and SPECT/CT imaging. In: Dahlbohm M (ed) Physics of PET/CT and SPECT/CT. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Lu F, Yuan Z (2015) PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases. Quant Imaging Med Surg 5(3):433–447PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ruth T (2009) The uses of radiotracers in the life sciences. Rep Prog Phys 72:016701Google Scholar
  4. 4.
    Conti M, Eriksson L (2004) Physics of pure and non-pure positron emitters for PET: a review and a discussion. Appl Radiat Isot 60:301–305Google Scholar
  5. 5.
    Sanchez-Crespo A, Andreo P, Larsson S (2004) Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 31:44–51PubMedGoogle Scholar
  6. 6.
    Da Silva M, de Almeida M, da Silva C et al (2004) Use of the reference source method to determine the half-lives of radionuclides of importance in nuclear medicine. Appl Radiat Isot 60:301–305PubMedGoogle Scholar
  7. 7.
    Severin GW, Engle JW, Nickles RJ, Barnhart TE (2011) 89Zr radiochemistry for PET. Med Chem 7(5):389–394PubMedPubMedCentralGoogle Scholar
  8. 8.
    Audenhaege K, Holen R, Vandenberghe S et al. (2015) Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging. Med Phys 42(8)Google Scholar
  9. 9.
    Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207PubMedGoogle Scholar
  10. 10.
    Brasse D, Kinahan PE, Lartizien C et al (2005) Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. J Nucl Med 46:859–867PubMedGoogle Scholar
  11. 11.
    Ollinger J, Fessler J (1997) Positron emission tomography. IEEE Signal Process Mag 43–55Google Scholar
  12. 12.
    Berker Y, Franke J, Salomon A et al (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53(5)Google Scholar
  13. 13.
    Lewitt R, Matej S (2003) Overview of methods for image reconstruction from projections in emission computed tomography. Proc IEEE 91(10)Google Scholar
  14. 14.
    Tong S, Alessio AM, Kinahan PE (2010) Image reconstruction for PET/CT scanners: past achievements and future challenges. Imaging Med 2(5):529–545PubMedPubMedCentralGoogle Scholar
  15. 15.
    Saha GB (2016) Basics of PET imaging: physics, chemistry, and regulations, 3rd edn. Springer International Publishing SwitzerlandGoogle Scholar
  16. 16.
    Bruyant P (2002) Analytic and iterative reconstruction algorithms in SPECT. J Nucl Med 43(10)Google Scholar
  17. 17.
    Moses WW (2011) Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A 648(Supplement 1):S236–S240Google Scholar
  18. 18.
    Peterson TE, Furenlid LR (2011) SPECT detectors: the anger camera and beyond. Phys Med Biol 56(17):R145–R182PubMedPubMedCentralGoogle Scholar
  19. 19.
    Moses WW (2009) Photodetectors for nuclear medical imaging. Nucl Instrum Methods Phys Res A 610(1):11–15PubMedPubMedCentralGoogle Scholar
  20. 20.
    Spanoudaki VC, Levin CS (2010) Photo-detectors for time of flight positron emission tomography (ToF-PET). Sensors 10:10484–10505PubMedGoogle Scholar
  21. 21.
    Russo P, Del Guerra A (2014) Solid-state detectors for small-animal imaging. In: Zaidi H (ed), Molecular imaging of small animals: instrumentation and applications. Springer Science + Business Media, New YorkGoogle Scholar
  22. 22.
    Lecoq P, Gektin A, Korzhik M (2017) Inorganic scintillators for detector systems: physical principles and crystal engineering, 2nd edn. Springer Publishing International Edition, SwitzerlandGoogle Scholar
  23. 23.
    Weber MJ (2002) Inorganic scintillators: today and tomorrow. J Lumin 100:35–45Google Scholar
  24. 24.
    Melcher CL (2000) Scintillation crystals for PET. J Nucl Med 41:6Google Scholar
  25. 25.
    Lecomte R (2009) Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 36(Suppl 1):S69–S85PubMedGoogle Scholar
  26. 26.
    Lecoq P (2016) Development of new scintillators for medical applications. Nucl Instrum. Methods Phys Res A(809):130–139Google Scholar
  27. 27.
    Grupen C, Buvat I (eds) (2012) Handbook of particle detection and imaging. Springer, Berlin-HeidelbergGoogle Scholar
  28. 28.
    Northrup RB (2002) Noninvaive instrumentation and measurement in medical diagnosis. CRC Press, Boca RatonGoogle Scholar
  29. 29.
    Ferrario (2018) Liquid xenon in nuclear medicine: state-of-the-art and the PETALO approach. JINST 13 C01044Google Scholar
  30. 30.
    Moskal P, Bednarski T, Białas P (2012) TOF-PET detector concept based on organic scintillators. Nucl Med Rev 15(suppl. C):C81–C84Google Scholar
  31. 31.
    Dahlbohm M (ed) (2017) Physics of PET/CT and SPECT/CT. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Lewellen TK (2008) Recent developments in PET detector technology. Phys Med Biol 53(17):R287–R317PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bisogni MG, Del Guerra A, Belcari M (2018) Med Appl Silicon Photomultipl.  https://doi.org/10.1016/j.nima.2018.10.175CrossRefGoogle Scholar
  34. 34.
    Anger HO (1958) Scintillation camera. Rev Sci Instrum 29:27Google Scholar
  35. 35.
    Casey ME, Nutt R (1986) A multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33(1):460–463Google Scholar
  36. 36.
    Ito M, Hong SJ, Lee JS (2011) Positron emission tomography (PET) Detectors with depth-of-interaction (DOI) capability. Biomed Eng Lett 1:70–81Google Scholar
  37. 37.
    Hunter WCJ, Barrett HH, Furenlid L (2009) Calibration method for ml estimation of 3D interaction position in a thick gamma-ray detector. IEEE Trans Nucl Sci 56(3):725PubMedPubMedCentralGoogle Scholar
  38. 38.
    Gross‐Weege N, Schug D, Hallen P, Schulz V (2016). Maximum likelihood positioning algorithm for high‐resolution PET scanners. Med Phys 43(6Part1):3049–3061Google Scholar
  39. 39.
    Mueller F, Schug D, Hallen P et al (2018) A novel DOI positioning algorithm for monolithic scintillator crystals in PET based on gradient tree boosting.  https://doi.org/10.1109/TRPMS.2018.2884320
  40. 40.
    Müller F, Schug D, Hallen P, Grahe J, Schulz V (2018) Gradient tree boosting-based positioning method for monolithic scintillator crystals in positron emission tomography. IEEE Trans Radiat Plasma Med Sci 2(5):411–421Google Scholar
  41. 41.
    Kinahan PE et al (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25(10):2046–2053PubMedGoogle Scholar
  42. 42.
    Dumoulin CL et al (1989) Three-dimensional phase contrast angiography. Magn Reson Med 9(1):139–149PubMedGoogle Scholar
  43. 43.
    Walker-Samuel S et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067Google Scholar
  44. 44.
    Jackson A, Buckley DL (2005) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Ed. Geoffrey JM Parker. Springer, BerlinGoogle Scholar
  45. 45.
    Catana C (2015) Motion correction options in PET/MRI. In: Seminars in nuclear medicine, vol 45, no 3. WB SaundersGoogle Scholar
  46. 46.
    Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44(3):781PubMedGoogle Scholar
  47. 47.
    Weissler B (2016) Digital PET/MRI for preclinical applications. Diss. PhD thesis, dissertation, RWTH AachenGoogle Scholar
  48. 48.
    Maramraju SH et al (2012) Electromagnetic interactions in a shielded PET/MRI system for simultaneous PET/MR imaging in 9.4 T: evaluation and results. IEEE Trans Nucl Sci 59(5):1892–1899Google Scholar
  49. 49.
    Occhipinti M et al (2018) Characterization of the detection module of the INSERT SPECT/MRI clinical system. IEEE Trans Rad Plasma Med Sci 2(6):554–563Google Scholar
  50. 50.
    Yamamoto S et al (2011) Interference between PET and MRI sub-systems in a silicon-photomultiplier-based PET/MRI system. Phys Med Biol 56(13):4147Google Scholar
  51. 51.
    Gebhardt P et al (2015) RESCUE-reduction of MRI SNR degradation by using an MR-synchronous low-interference PET acquisition technique. IEEE Trans Nucl Sci 62(3):634–643Google Scholar
  52. 52.
    Gebhardt P et al (2016) FPGA-based RF interference reduction techniques for simultaneous PET–MRI. Phys Med Biol 61(9):3500PubMedPubMedCentralGoogle Scholar
  53. 53.
    Lee, BJ et al (2018) MR performance in the presence of a radio frequency-penetrable positron emission tomography (PET) insert for simultaneous PET/MRI. IEEE Trans on Med Imaging 37(9):2060–2069Google Scholar
  54. 54.
    Gross‐Weege N et al (2018) Characterization methods for comprehensive evaluations of shielding materials used in an MRI. Med phys 45(4):1415–1424Google Scholar
  55. 55.
    Wehner J et al (2015) MR-compatibility assessment of the first preclinical PET-MRI insert equipped with digital silicon photomultipliers. Phys Med Biol 60(6) 2231Google Scholar
  56. 56.
    Weirich C et al (2012) Analysis and correction of count rate reduction during simultaneous MR-PET measurements with the BrainPET scanner. IEEE Trans Med Imaging 31(7):1372–1380Google Scholar
  57. 57.
    Omidvari, N et al (2018) MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system. Phys Med Biol 63(9):095002Google Scholar
  58. 58.
    Jezzard P, Barnett AS, Pierpaoli C (1998) Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 39(5):801–812PubMedGoogle Scholar
  59. 59.
    Weissler B et al (2015) A digital preclinical PET/MRI insert and initial results. IEEE Trans Med Imaging 34(11):2258–2270Google Scholar
  60. 60.
    Gross‐Weege N, Nolte T, Schulz V (2018) MR image corrections for PET-induced gradient distortions. Phys Med BiolGoogle Scholar
  61. 61.
    Jones D, Townsend D (2017) History and future technical innovation in positron emission tomography. J Med Imag 4(1):011013Google Scholar
  62. 62.
    Vandenberghe S, Mikhaylova E, D’Hoe E (2016) Recent developments in time-of-flight PET. EJNMMI Phys 3:3PubMedPubMedCentralGoogle Scholar
  63. 63.
    Slomka PJ, Pan T, Germano G (2016) Recent advances and future progress in PET instrumentation. Semin Nucl Med 46:5–19PubMedGoogle Scholar
  64. 64.
    Sluis J, Jong J, Schaar J (2019) Performance characteristics of the digital biograph vision PET/CT system. J Nucl Med.  https://doi.org/10.2967/jnumed.118.215418
  65. 65.
    Cherry SR, Jones T, Karp JS (2018) Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 59:3–12PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kagadis GC, Ford NL, Karnabatidis DN (eds) (2018) Handbook of small animal imaging: preclinical imaging, therapy, and applications. CRC PressGoogle Scholar
  67. 67.
    Gu Z, Taschereau R, Vu NT et al (2018) Performance evaluation of G8, a high sensitivity benchtop preclinical PET/CT tomograph.  https://doi.org/10.2967/jnumed.118.208827
  68. 68.
    Magota K, Kubo N, Yuji K (2011) Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging. Eur J Nucl Med Mol Imaging 38(4):742–752PubMedGoogle Scholar
  69. 69.
    Sanchez F, Orero A, Soriano A, et al (2013) ALBIRA: a small animal PET/SPECT/CT imaging system. Med Phys 40(5)Google Scholar
  70. 70.
    Siemens (2013) Symbia t-series system specifications. https://3.imimg.com/data3/AC/PC/MY-13438971/gamma-camera.pdf. Accessed 6th April 2019
  71. 71.
  72. 72.
    GE Discovery NM/CT 670 Pro Data Sheet (2014) https://mind.net.au/wp-content/uploads/2017/01/Discovery-NMCT-670-Pro-Data-Sheet.pdf. Accessed 6th April 2019
  73. 73.
    Ritt P, Sanders J, Kuwert T (2014) SPECT/CT technology. Clin Transl Imaging (2014) 2:445–457Google Scholar
  74. 74.
  75. 75.
  76. 76.
    Khalil MM, Tremoleda JL, Bayomy TB, et al (2011) Molecular SPECT imaging: an overview. Int J Mol Imaging. Article ID 796025Google Scholar
  77. 77.
    Gupta A, Kim KY, Hwang D et al (2018) Performance evaluation and quantitative accuracy of multipinhole nanoSPECT/CT scanner for theranostic Lu-177 imaging. J Korean Phys Soc 72(11):1379–1386Google Scholar
  78. 78.
    Goorden MC, van der Have F, Kreuger R (2013) VECTor: a preclinical imaging system for simultaneous submillimeter SPECT and PET. J Nucl Med 54:1–7Google Scholar
  79. 79.
    Ljungberg M, Pretorius PH (2018) SPECT/CT: an update on technological developments and clinical applications. Br J Radiol 90:20160402Google Scholar
  80. 80.
    Delso G et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52.12 (2011):1914–1922Google Scholar
  81. 81.
    Grant AM et al (2016) NEMA NU 2‐2012 performance studies for the SiPM‐based ToF‐PET component of the GE SIGNA PET/MR system. Med phys 43(5):2334–2343Google Scholar
  82. 82.
    Disselhorst JA et al (2016) Principles of PET/MR imaging. J Nucl Med jnumed-113Google Scholar
  83. 83.
    Vandenberghe S, Marsden PK (2015) PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 60(4):R115PubMedGoogle Scholar
  84. 84.
    Zaidi H, Del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38(10):5667–5689Google Scholar
  85. 85.
    Shao Y et al (1965) Simultaneous PET and MR imaging. Phys Med Biol 42.10:1965Google Scholar
  86. 86.
    Parl C et al (2017) A novel optically transparent RF shielding for fully integrated PET/MRI systems. Phys Med Biol 62(18):7357PubMedGoogle Scholar
  87. 87.
    González AJ et al (2016) The MINDView brain PET detector, feasibility study based on SiPM arrays. Nucl Instrum Methods Phys Res Sect A: Accel, Spect, Detect Assoc Equip 818:82–90Google Scholar
  88. 88.
    Benlloch JM et al (2018) The MINDVIEW project: first results. Eur Psychiatry 50:21–27Google Scholar
  89. 89.
    Hutton BF, Erlandsson K, Thielemanns K (2018) Advances in clinical molecular imaging instrumentation. Clin Transl Imaging 6:31–45Google Scholar
  90. 90.
    Hutton BF et al (2018) Development of clinical simultaneous SPECT/MRI. Brit J Radiol 91(1081):20160690Google Scholar
  91. 91.
    Van Holen R, Vandenberghe S (2013) Optimization of a stationary small animal SPECT system for simultaneous SPECT/MRI. In: 2013 IEEE nuclear science symposium and medical imaging conference (2013 NSS/MIC). IEEEGoogle Scholar
  92. 92.
    Meier D et al (2011) A SPECT camera for combined MRI and SPECT for small animals. Nucl Instrum Methods Phys Res, Sect A 652(1):731–734Google Scholar
  93. 93.
    Hamamura MJ et al (2010) Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol 556:1563Google Scholar
  94. 94.
    Cai L et al (2014) MRC-SPECT: A sub-500 µm resolution MR-compatible SPECT system for simultaneous dual-modality study of small animals. Nucl Instrum Methods Phys Res Sect A: Accel, Spectrometers, Detect Assoc Equip 734:147–151Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Teresa Nolte
    • 1
  • Nicolas Gross-Weege
    • 1
  • Volkmar Schulz
    • 1
    • 2
    • 3
    Email author
  1. 1.Physics of Molecular Imaging Systems, Experimental Molecular ImagingRWTH Aachen UniversityAachenGermany
  2. 2.Hyperion Hybrid Imaging Systems GmbHAachenGermany
  3. 3.Fraunhofer Institute for Digital Medicine MEVISBremenGermany

Personalised recommendations