Advertisement

Internal Radiation Therapy

  • Uwe HaberkornEmail author
  • Clemens Kratochwil
  • Frederik Giesel
Chapter
  • 71 Downloads
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)

Abstract

Targeted therapies are applied to increase the efficiency of antitumor treatment by simultaneously decreasing side effects. This can be achieved using carrier molecules which specifically bind to target structures or areas with remodeling activity. These carrier molecules may be coupled to chemotherapeutic drugs or to radioactive isotopes. In most cases, these carrier molecules are antibodies against tumor antigens, peptides, or small molecules which are binders for overexpressed receptors on tumor cells. The paradigm of endoradiotherapy is exemplified by the peptidic tracer DOTATOC which binds to somatostatin receptors and recently also small molecule inhibitors with high affinity for the prostate-specific membrane antigen.

Keywords

Endoradiotherapy Peptides Small molecules DOTATOC PSMA 

References

  1. 1.
    Ahmadzadehfar H, Eppard E, Kürpig S, Fimmers R, Yordanova A, Schlenkhoff CD, Gärtner F, Rogenhofer S, Essler M (2016) Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget 7:12477–12488PubMedPubMedCentralGoogle Scholar
  2. 2.
    Altmann A, Sauter M, Roesch S, Mier W, Warta R, Debus J, Dyckhoff G, Herold-Mende C, Haberkorn U (2017) Identification of a novel ITGαvβ6-binding peptide using protein separation and phage display. Clin Cancer Res 23:4170–4180PubMedGoogle Scholar
  3. 3.
    Baidoo KE, Lin KS, Zhan Y, Finley P, Sheffel U, Wagner HN Jr (1998) Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjug Chem 9:218–225PubMedGoogle Scholar
  4. 4.
    Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled j591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23:4591–4601Google Scholar
  5. 5.
    Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, Schottelius M, Mueller D, Klette I, Wester HJ (2016) Lutetium-177 PSMA radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med 2016(57):1006–1013Google Scholar
  6. 6.
    Behr TM, Béhé M (2002) Cholecystokinin-B/gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med 32:97–107Google Scholar
  7. 7.
    Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W et al (2015) Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J Nucl Med 56:914–920Google Scholar
  8. 8.
    Benešová M, Bauder-Wüst U, Schäfer M et al (2016) Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J Med Chem 59:1761–1775PubMedGoogle Scholar
  9. 9.
    Bodei L, Cremonesi M, Zoboli S, Grana C, Mazzetta C, Rocca P, Caracciolo M, Mäcke HR, Chinol M, Paganelli G (2003) Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging 30:207–216Google Scholar
  10. 10.
    Breeman WA, de Jong M, Erion JL, Bugaj JE, Srinivasan A, Bernard BF, Kwekkeboom DJ, Visser TJ, Krenning E (2002) Preclinical comparison of (111)In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43:1650–1656PubMedGoogle Scholar
  11. 11.
    Carr BI (2004) Hepatic arterial 90Yttrium glass microspheres (Therasphere) for unresectable hepatocellular carcinoma: interim safety and survival data on 65 patients. Liver Transpl 10:S107–S110PubMedGoogle Scholar
  12. 12.
    Chinol M, Bodei L, Cremonesi M, Paganelli G (2002) Receptor-mediated radiotherapy with Y-DOTA-DPhe-Tyr-octreotide: the experience of the European Institute of Oncology Group. Semin Nucl Med 32:141–147Google Scholar
  13. 13.
    Dancey JE, Shepherd FA, Paul K, Sniderman KW, Houle S, Gabrys J et al (2000) Treatment of nonresectable hepatocellular carcinoma with intrahepatic 90Y-microspheres. J Nucl Med 41:1673–1681PubMedGoogle Scholar
  14. 14.
    de Jong M, Bakker WH, Bernard BF, Valkema R, Kwekkeboom DJ, Reubi JC et al (1999) Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 40:2081–2087PubMedGoogle Scholar
  15. 15.
    de Visser M, Janssen PJJM, Srinivasan A, Reubi JC, Waser B, Erion JL, Schmidt MA, Krenning EP, de Jong M (2003) Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med 30:1134–1139Google Scholar
  16. 16.
    Dejong M, Breeman WAP, Valkema R, Bernard BF, Krenning EP (2005) Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med 46:13S–17SGoogle Scholar
  17. 17.
    Delker A, Fendler WP, Kratochwil C et al (2016) Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. Eur J Nucl Med Mol Imaging 43:42–51Google Scholar
  18. 18.
    Dumont RA, Tamma M, Braun F et al (2013) Targeted radiotherapy of prostate cancer with a gastrin-releasing peptide receptor antagonist is effective as monotherapy and in combination with rapamycin. J Nucl Med 54:762–769Google Scholar
  19. 19.
    Geschwind JF, Salem R, Carr BI, Soulen MC, Thurston KG, Goin KA et al (2004) Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology 127(5 Suppl 1):S194–S205PubMedGoogle Scholar
  20. 20.
    Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Maecke HR, Reubi JC (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA 103:16436–16441PubMedGoogle Scholar
  21. 21.
    Goin JE, Salem R, Carr BI, Dancey JE, Soulen MC, Geschwind JF et al (2005) Treatment of unresectable hepatocellular carcinoma with intrahepatic yttrium 90 microspheres: factors associated with liver toxicities. J Vasc Interv Radiol 16:205–213PubMedGoogle Scholar
  22. 22.
    Gourni E, Mansi R, Jamous M et al (2014) N-terminal modifications improve the receptor affinity and pharmacokinetics of radiolabeled peptidic gastrin-releasing peptide receptor antagonists: examples of 68Ga- and 64Cu-la beled peptides for PET imaging. J Nucl Med 55:1719–1725Google Scholar
  23. 23.
    Haberkorn U, Eisenhut M, Altmann A, Mier W (2008) Endoradiotherapy with peptides—status and future development. Curr Med Chem 15:219–234PubMedGoogle Scholar
  24. 24.
    Haberkorn U, Eder M, Kopka K, Babich JW, Eisenhut M (2016) New Strategies in prostate cancer: prostate- specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res 22:9–15PubMedGoogle Scholar
  25. 25.
    Haberkorn U, Kopka K, Giesel F, Kratochwil C (2016) Future trends in prostate cancer theranostics with PSMA ligands. Clin Transl Imaging 4:487–489Google Scholar
  26. 26.
    Heck MM, Retz M, D Alessandria C, Rauscher I, Scheidhauer K, Maurer T, Storz E, Janssen F, Schottelius M, Wester HJ, Gschwend JE, Schwaiger M, Tauber R, Eiber M (2016) Systemic radioligand therapy with 177Lu-PSMA-I&T in patients with metastatic castration-resistant prostate cancer. J Urol 196:382–391Google Scholar
  27. 27.
    Herba MJ, Thirlwell MP (2002) Radioembolization for hepatic metastases. Semin Oncol 29:152–159PubMedGoogle Scholar
  28. 28.
    Hessenius C, Bäder M, Meinhold H, Bohmig M, Faiss S, Reubi JC, Wiedenmann B (2000) Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med 27:1684–1693PubMedGoogle Scholar
  29. 29.
    Hilgard P, Müller S, Hamami M, Sauerwein WS, Haberkorn U, Gerken G, Antoch G (2009) Selektive interne Radiotherapie (Radioembolisation) und Strahlentherapie beim HCC - Stand und Perspektiven. Z Gastroenterol 47:37–54PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hohberg M, Eschner W, Schmidt M et al (2016) Lacrimal glands may represent organs at risk for radionuclide therapy of prostate cancer with 177LuDKFZ-PSMA-617. Mol Imaging Biol 18(3):437–445PubMedGoogle Scholar
  31. 31.
    Hoskin P, Sartor O, O’Sullivan JM et al (2014) Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCAtrial. Lancet Oncol 15:1397–1406PubMedGoogle Scholar
  32. 32.
    Kabasakal L, AbuQbeitah M, Aygün A et al (2015) Pre-therapeutic dosimetry of normal organs and tissues of 177Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 42:1976–1983Google Scholar
  33. 33.
    Kratochwil C, Giesel FL, López-Benítez R et al (2010) Intraindividual comparison of selective arterial versus venous 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors. Clin Cancer Res 16:2899–2905PubMedGoogle Scholar
  34. 34.
    Kratochwil C, Lopez-Benıtez R, Mier W et al (2011) Hepatic arterial infusion enhances DOTATOC radiopeptide therapy in patients with neuroendocrine liver metastases. Endocr Relat Cancer 18:595–602Google Scholar
  35. 35.
    Kratochwil C, Afshar-Oromieh A, Kopka K et al (2016) Current status of prostate-specific membrane antigen targeting in nuclear medicine: clinical translation of chelator containing prostate-specific membrane antigen ligands into diagnostics and therapy for prostate cancer. Semin Nucl Med 46:405–418PubMedGoogle Scholar
  36. 36.
    Kratochwil C, Giesel FL, Stefanova M, Benešová M, Bronzel M, Afshar-Oromieh A, Mier W, Eder M, Kopka K, Haberkorn U (2016) PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate cancer with Lu-177 labeled PSMA-617. J Nucl Med 57:1170–1176Google Scholar
  37. 37.
    Kratochwil C, Bruchertseifer F, Rathke H et al (2017) Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 58:1624–1631PubMedGoogle Scholar
  38. 38.
    Kwekkeboom DJ, Bakker WH, Kooij PP, Konijnenberg MW, Srinivasan A et al (2001) [177Lu-DOTAOTyr3]octreotate: comparison with [111In-DTPAo]octreotide in patients. Eur J Nucl Med 28:1319–1325Google Scholar
  39. 39.
    Lapa C, Herrmann K, Schirbel A et al (2017) CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics 7:1589–1597PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lewandowski RJ, Thurston KG, Goin JE et al (2005) 90Y microsphere (TheraSphere) treatment for unresectable colorectal cancer metastases of the liver: response to treatment at targeted doses of 135–150 Gy as measured by [18F] fluorodeoxyglucose positron emission tomography and computed tomographic imaging. J Vasc Interv Radiol 16:1641–1651PubMedGoogle Scholar
  41. 41.
    Li S, Peck-Radosavljevic M, Kienast O, Preitfellner J, Hamilton G, Kurtaran A, Pirich C, Angelberger P, Dudczak R (2003) Imaging gastrointestinal tumours using vascular endothelial growth factor-165 (VEGF165) receptor scintigraphy. Ann Oncol 14:1274–1277PubMedGoogle Scholar
  42. 42.
    Lin KS, Luu A, Baidoo KE, Hashemzadeh-Gargari H, Chen MK, Brenneman K et al (2005) A new high affinity technetium-99 m-bombesin analogue with low abdominal accumulation. Bioconjug Chem 16:43–50PubMedGoogle Scholar
  43. 43.
    Maecke HR, Hofmann M, Haberkorn U (2005) Gallium-68 labeled peptides in tumor imaging. J Nucl Med 46:172–178Google Scholar
  44. 44.
    Mansi R, Abiraj K, Wang X et al (2015) Evaluation of three different families of bombesin receptor radioantagonists for targeted imaging and therapy of gastrin releasing peptide receptor (GRP-R) positive tumors. J Med Chem 58:682–691PubMedGoogle Scholar
  45. 45.
    Martin ME, Sue O’Dorisio M, Leverich WM, Kloepping KC, Walsh SA, Schultz MK (2013) “Click”-cyclized (68)Ga-labeled peptides for molecular imaging and therapy: synthesis and preliminary in vitro and in vivo evaluation in a melanoma model system. Recent Results Cancer Res 194:149–175PubMedPubMedCentralGoogle Scholar
  46. 46.
    Maschauer S, Prante O (2018) Radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor-positive tumors. J Label Compd Radiopharm 61:309–325Google Scholar
  47. 47.
    Milowsky MI, Nanus DM, Kostakoglu L et al (2007) Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J Clin Oncol 25:540–547PubMedGoogle Scholar
  48. 48.
    Ocak M, Helbok A, Rangger C et al (2011) Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607. Eur J Nucl Med Mol Imaging 38:1426–1435PubMedGoogle Scholar
  49. 49.
    Parker CC, Coleman RE, Sartor O, et al (2017) Three-year safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases from phase 3 randomized alpharadin in symptomatic prostate cancer trial. Eur Urol pii:S0302-2838(17)30516-X.  https://doi.org/10.1016/j.eururo.2017.06.021
  50. 50.
    Popp I, Del Pozzo L, Waser B et al (2017) Approaches to improve metabolic stability of a statine-based GRP receptor antagonist. Nucl Med Biol 45:22–29PubMedGoogle Scholar
  51. 51.
    Raderer M, Kurtaran A, Leimer M, Angelberger P, Niederle B, Vierhapper H, Vorbeck F, Hejna MH, Scheithauer W, Pidlich J, Virgolini I (2000) Value of peptide receptor scintigraphy using (123)I-vasoactive intestinal peptide and (111)In-DTPA-D-Phe1-octreotide in 194 carcinoid patients: Vienna University Experience, 1993 to 1998. J Clin Oncol 18:1331–1336PubMedGoogle Scholar
  52. 52.
    Rahbar K, Ahmadzadehfar H, Kratochwil C et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58:85–90Google Scholar
  53. 53.
    Kratochwil C, Bruchertseifer F, Rathke H et al (2018) Targeted a-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med 59:795–802Google Scholar
  54. 54.
    Reubi JC, Waser B, Schaer JC, Laederach U, Erion J, Srinivasan A, Schmidt MA, Bugai JE (1998) Unsulfated DTPA- and DOTA-CCK analogs as specific high-affinity ligands for CCK-B receptor-expressing human and rat tissues in vitro and in vivo. Eur J Nucl Med 25:481–490Google Scholar
  55. 55.
    Reubi JC, Schar JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282Google Scholar
  56. 56.
    Reubi JC, Gugger M, Waser B (2002) Co-expressed peptide receptors in breast cancer as a molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med 29:855–862Google Scholar
  57. 57.
    Reubi JC, Korner M, Waser B, Mazzucchelli L, Guillou L (2004) High expression of peptide receptors as a novel target in gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 31:803–810PubMedGoogle Scholar
  58. 58.
    Roesch S, Lindner T, Sauter M, Loktev A, Flechsig P, Müller M, Mier W, Warta R, Dyckhoff G, Herold-Mende C, Haberkorn U, Altmann A (2018) Comparative study of the novel RGD motif-containing αvβ6 integrin binding peptides SFLAP3 and SFITGv6 for diagnostic application in HNSCC. J Nucl Med pii: jnumed.118.210013.  https://doi.org/10.2967/jnumed.118.210013
  59. 59.
    Rosenkranz A, Slastnikova TA, Durymanov MO, Sobolev AS (2013) Malignant melanoma and melanocortin 1 receptor A. Biochem (Mosc) 7:1228–1237Google Scholar
  60. 60.
    Saad F, Carles J, Gillessen S et al (2016) Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial. Lancet Oncol 17:1306–1316Google Scholar
  61. 61.
    Salem R, Thurston KG, Carr BI, Goin JE, Geschwind JF (2002) Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol 13:S223–S229PubMedGoogle Scholar
  62. 62.
    Sartor O, Coleman R, Nilsson S et al (2014) Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 15:738–746PubMedGoogle Scholar
  63. 63.
    Sato KT, Lewandowski RJ, Mulcahy MF, Atassi B, Ryu RK, Gates VL, Nemcek A, Barakat O, Benson A III, Mandal R, Talamonti M, Wong CY, Miller FH, Newman SB, Shaw JM, Thurston KG, Omary KA, Salem R (2008) Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres—safety, efficacy, and survival. Radiology 247:507–515PubMedGoogle Scholar
  64. 64.
    Schuhmacher J, Zhang H, Doll J, Mäcke HR, Matys R, Hauser H, Henze M, Haberkorn U, Eisenhut M (2005) GRP receptor-targeted PET of a rat pancreas carcinoma xenograft in nude mice with a 68gallium labeled bombesin (6-14) analog. J Nucl Med 4:691–699Google Scholar
  65. 65.
    Scopinaro F, De Vincentis G, Varvarigou AD, Laurenti C, Iori F, Remediani S, Chiarini S, Stella S (2003) 99mTc-bombesin detects prostate cancer and invasion of pelvic lymph nodes. Eur J Nucl Med Mol Imaging 30:1378–1382Google Scholar
  66. 66.
    Stoykow C, Erbes T, Maecke HR et al (2016) Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist (68)Ga-RM2 and PET. Theranostics 6:1641–1650PubMedPubMedCentralGoogle Scholar
  67. 67.
    Strosberg J, El-Haddad G, Wolin E, the NETTER-1 Trial Investigators (2017) Phase 3 trial of 177Lu dotatate for midgut neuroendocrine tumors. N Engl J Med 376:125–135Google Scholar
  68. 68.
    Strosberg J, Wolin E, Chasen B, the NETTER-1 Study Group (2018) Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-dotatate in the phase III NETTER-1 trial. J Clin Oncol 36:2578–2584Google Scholar
  69. 69.
    Thakur ML, Marcus CS, Saeed S, Palella V, Minami C, Diggles L, Le Pham H, Ahdoot R, Kalinowski EA (2000) 99mTc-labeled vasoactive intestinal peptide analog for rapid localization of tumors in humans. J Nucl Med 41:107–110PubMedGoogle Scholar
  70. 70.
    Valkema R, de Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, DeJong FH, Christiansen A, Kam BL, DeHerder WW, Stridsberg M, Lindemans J, Ensing G, Krenning EP (2002) Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 32:110–122Google Scholar
  71. 71.
    Vallabhajosula S, Nikolopoulou A, Jhanwar YS et al (2016) Radioimmunotherapy of metastatic prostate cancer with 177Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm 9:44–53PubMedGoogle Scholar
  72. 72.
    Virgolini I, Raderer M, Kurtaran A, Angelberger P, Yang Q, Radosavlejvic M et al (1996) 123I-vasoactive intestinal peptide (VIP) receptor scanning: update of imaging results in patients with adenocarcinomas and endocrine tumors of the gastrointestinal tract. Nucl Med Biol 23:685–692PubMedGoogle Scholar
  73. 73.
    Waldherr C, Pless M, Maecke HR, Haldemann A, Mueller-Brand J (2001) The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 12:941–945Google Scholar
  74. 74.
    Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 ligands: the next big hit? J Nucl Med 58:77S–82SPubMedGoogle Scholar
  75. 75.
    Wild D, Béhé M, Wicki A, Storch D, Waser B, Gotthardt M, Keil B, Christofori G, Reubi JC, Mäcke HR (2006) Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033Google Scholar
  76. 76.
    Zechmann CM, Afshar-Oromieh A, Armor T et al (2014) Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging 41:1280–1292PubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhang C, Zhang Z, Lin KS, Lau J, Zeisler J, Colpo N, Perrin DM, Bénard F (2018) Melanoma imaging using 18F-labeled α-melanocyte-stimulating hormone derivatives with positron emission tomography. Mol Pharm 15:2116–2122PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Uwe Haberkorn
    • 1
    • 2
    • 3
    Email author
  • Clemens Kratochwil
    • 1
  • Frederik Giesel
    • 1
  1. 1.Department of Nuclear MedicineUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Clinical Cooperation Unit Nuclear MedicineGerman Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)HeidelbergGermany

Personalised recommendations