Advertisement

Non-invasive Imaging Techniques: From Histology to In Vivo Imaging

Chapter of Imaging in Oncology
  • Thomas BocklitzEmail author
  • Anja Silge
  • Hyeonsoo Bae
  • Marko Rodewald
  • Fisseha Bekele Legesse
  • Tobias Meyer
  • Jürgen PoppEmail author
Chapter
  • 47 Downloads
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)

Abstract

In this chapter, we will introduce and review molecular-sensitive imaging techniques, which close the gap between ex vivo and in vivo analysis. In detail, we will introduce spontaneous Raman spectral imaging, coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS), second-harmonic generation (SHG) and third-harmonic generation (THG), two-photon excited fluorescence (TPEF), and fluorescence lifetime imaging (FLIM). After reviewing these imaging techniques, we shortly introduce chemometric methods and machine learning techniques, which are needed to use these imaging techniques in diagnostic applications.

Keywords

Non-invasive imaging Raman spectral imaging Coherent anti-Stokes Raman scattering (CARS) Stimulated Raman scattering (SRS) Second-harmonic generation (SHG) Third-harmonic generation (THG) Two-photon excited fluorescence (TPEF) Fluorescence lifetime imaging (FLIM) Machine learning Chemometrics 

References

  1. 1.
    Popp J, Tuchin VV, Chiou A, Heinemann S (eds) (2011) Handbook of biophotonics. Basics and techniques, vol 1. Wiley-VCHGoogle Scholar
  2. 2.
    Vogler N, Heuke S, Bocklitz TW, Schmitt M, Popp J (2015) Multimodal imaging spectroscopy of tissue. Annu Rev Anal Chem 8:359–387CrossRefGoogle Scholar
  3. 3.
    Abramczyk H, Brozek-Pluska B (2013) Raman imaging in biochemical and biomedical applications. diagnosis and treatment of breast cancer. Chem Rev 113(8):5766–5781Google Scholar
  4. 4.
    Stewart S, Priore RJ, Nelson MP, Treado PJ (2012) Raman imaging. Annu Rev Anal Chem 5:337–360Google Scholar
  5. 5.
    Bocklitz TW, Guo S, Ryabchykov O, Vogler N, Popp N (2016) Raman based molecular imaging and analytics: a magic bullet for biomedical applications!? Anal Chem 88:133–151Google Scholar
  6. 6.
    Petry R, Schmitt M, Popp J (2003) Raman spectroscopy—a prospective tool in the life siences. Chem Phys Chem 4:14–30CrossRefPubMedGoogle Scholar
  7. 7.
    Czamara K, Majzner K, Selmi A, Baranska M, Ozaki Y, Kaczor A (2017) Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2d and 3d microscopy. Sci Rep 7:40889Google Scholar
  8. 8.
    Heraud P, Marzec KM, Zhang Q-H, Yuen WS, Carroll J, Wood BR (2017) Label-free in vivo Raman microspectroscopic imaging of the macromolecular architecture of oocytes. Sci Rep 7(1):8945Google Scholar
  9. 9.
    Yildirim T, Matthäus C, Press AT, Schubert S, Bauer M, Popp J, Schubert US (2017) Uptake of retinoic acid-modified pmma nanoparticles in lx-2 and liver tissue by Raman imaging and intravital microscopy. Macromol Biosci 17(10):1700064Google Scholar
  10. 10.
    Bräutigam K, Bocklitz T, Schmitt M, Rösch P, Popp J (2013) Raman spectroscopic imaging for the real-time detection of chemical changes associated with docetaxel exposure. Chem Phys Chem 14:550–553CrossRefPubMedGoogle Scholar
  11. 11.
    Mignolet A, Wood BR, Goormaghtigh E (2018) Intracellular investigation on the differential effects of 4 polyphenols on mcf-7 breast cancer cells by Raman imaging. Analyst 143(1):258–269Google Scholar
  12. 12.
    Tirinato L, Liberale C, Di Franco S, Candeloro P, Benfante A, La Rocca R, Potze L, Marotta R, Ruffilli R, Rajamanickam VP et al (2015) Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem cells 33(1):35–44Google Scholar
  13. 13.
    Dochow S, Krafft C, Neugebauer U, Bocklitz T, Henkel T, Albert J, Popp J (2011) Tumor cell identification by means of Raman spectroscopy in combination with optical traps. Lab Chip 11:1484–1490CrossRefPubMedGoogle Scholar
  14. 14.
    Tolstik T, Marquardt C, Matthäus C, Bergner N, Bielecki C, Krafft C, Stallmach A, Popp J (2014) Discrimination and classification of liver cancer cells and proliferation states by Raman spectroscopic imaging. Analyst 139(22):6037–6044Google Scholar
  15. 15.
    Ramoji A, Neugebauer U, Bocklitz T, Förster M, Kiehntopf M, Bauer M, Popp J (2012) Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood. Anal Chem 84(12):5335–5342CrossRefPubMedGoogle Scholar
  16. 16.
    Krafft C, Belay B, Bergner N, Romeike B, Reichart R, Kalff R, Popp J (2012) Advances in optical biopsy--correlation of malignancy and cell density of primary brain tumors using raman microspectroscopic imaging. AnalystGoogle Scholar
  17. 17.
    Diem M, Mazur A, Lenau K, Schubert J, Bird B, Miljković M, Krafft C, Popp J (2013) Molecular pathology via IR and Raman spectral imaging. J Biophoton 6(11–12):855–886Google Scholar
  18. 18.
    Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J (2017) Label-free molecular imaging of biological cells and tissues by linear and nonlinear raman spectroscopic approaches. Angewandte Chemie International Edition 56(16):4392–4430Google Scholar
  19. 19.
    Vogler N, Bocklitz T, Salah FS, Schmidt C, Bräuer R, Cui T, Mireskandari M, Greten F, Schmitt M, Stallmach A, Petersen I, Popp J (2015) Systematic evaluation of colorectal tissue diagnostics based on the statistical analysis of Raman spectra. J Biophoton 9:533–541Google Scholar
  20. 20.
    Bocklitz T, Salah FS, Vogler N, Heuke S, Chernavskaia O, Schmidt C, Waldner M, Greten FR, Bräuer R, Schmitt M, Stallmach A, Petersen I, Popp J (2016) Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool. BMC Cancer 16(1):1–11Google Scholar
  21. 21.
    Bergner N, Bocklitz T, Romeike BFM, Reichart F, Kalff R, Krafft C, Popp J (2012) Identification of primary tumors of brain metastases by Raman imaging and support vector machines. Chemom Intell Laborary Syst 117:224–232Google Scholar
  22. 22.
    Desroches J, Jermyn M, Pinto M, Picot F, Tremblay M-A, Obaid S, Marple E, Urmey K, Trudel D, Soulez G et al (2018) A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci Rep 8(1):1792Google Scholar
  23. 23.
    Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot M-C, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7(274):274ra19–274ra19Google Scholar
  24. 24.
    Popp J, Tuchin VV, Chiou A, Heinemann SH (2013) Handbook of biophotonics. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, GermanyCrossRefGoogle Scholar
  25. 25.
    Müller M, Zumbusch A (2007) Coherent anti-Stokes Raman scattering microscopy. Chemphyschem: Eur J Chem Phys Phys Chem 8(15):2156–2170Google Scholar
  26. 26.
    Evans CL, Xie XS (2008) Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem (Palo Alto, Calif.) 1:883–909Google Scholar
  27. 27.
    Krafft Ch, Dietzek B, Popp J (2009) Raman and CARS microspectroscopy of cells and tissues. Analyst 134(6):1046–1057Google Scholar
  28. 28.
    Rodriguez LG, Lockett SJ, Holtom GR (2006) Coherent anti-Stokes Raman scattering microscopy: a biological review. Cytometry Part: J Int Soc Anal Cytol, 69(8):779–791Google Scholar
  29. 29.
    Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett 82(20):4142–4145Google Scholar
  30. 30.
    Pohling C, Bocklitz T, Duarte AS, Emmanuello C, Ishikawa MS, Dietzeck B, Buckup T, Uckermann O, Schackert G, Kirsch M, Schmitt M, Popp J, Motzkus M (2017) Multiplex coherent anti-Stokes Raman scattering microspectroscopy of brain tissue with higher ranking data classification for biomedical imaging. J Biomed Opt 22:22–25CrossRefGoogle Scholar
  31. 31.
    Parekh SH, Lee YJ, Aamer KA, Cicerone MT (2010) Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophys J 99(8):2695–2704Google Scholar
  32. 32.
    Bocklitz T, Meyer T, Schmitt M, Rimke I, Hoffmann F, von Eggeling F, Ernst G, Guntinas-Lichius O, Popp J (2018) Comparison of hyperspectral coherent raman scattering microscopies for biomedical applications. APL Photonics 3:092404CrossRefGoogle Scholar
  33. 33.
    Lee M, Downes A, Chau Y-Y, Serrels B, Hastie N, Elfick A, Brunton V, Frame M, Serrels A (2015) In vivo imaging of the tumor and its associated microenvironment using combined CARS/2-photon microscopy. Intravital 4(1):e1055430Google Scholar
  34. 34.
    Cui S, Zhang S, Yue S (2018) Raman spectroscopy and imaging for cancer diagnosis. J Healthc Eng 2018:8619342PubMedPubMedCentralGoogle Scholar
  35. 35.
    Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science (New York, N.Y.) 322(5909):1857–1861Google Scholar
  36. 36.
    Lu F-K, Calligaris D, Olubiyi OI, Norton I, Yang W, Santagata S, Xie XS, Golby AJ, Agar NYR (2016) Label-free neurosurgical pathology with stimulated Raman imaging. Cancer Res 76(12):3451–3462Google Scholar
  37. 37.
    Weng S, Xu X, Li J, Wong STC (2017) Combining deep learning and coherent anti-stokes Raman scattering imaging for automated differential diagnosis of lung cancer. J Biomed Opt 22(10):1–10Google Scholar
  38. 38.
    Chernavskaia O, Heuke S, Vieth M, Friedrich O, Schürmann S, Atreya R, Stallmach A, Neurath MF, Waldner M, Petersen I, Schmitt M, Bocklitz T, Popp J (2016) Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging. Sci Rep 6:29239CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rodner E, Bocklitz T, von Eggeling F, Ernst G, Chernavskaia O, Popp J, Denzler J, Guntinas-Lichius O (2019) Fully convolutional networks in multimodal nonlinear microscopy images for automated detection of head and neck carcinoma: a pilot study. Head Neck 41(1):116–121Google Scholar
  40. 40.
    Heuke S, Chernavskaia O, Bocklitz T, Legesse FB, Meyer T, Akimov D, Dirsch O, Ernst G, von Eggeling F, Petersen I, Guntinas-Lichius O, Schmitt M, Popp J (2016) Multimodal nonlinear microscopic investigations on Head and Neck squamous cell carcinoma—toward surgery assisting frozen section analysis. Head Neck 38(10):1545–1552Google Scholar
  41. 41.
    Wright AJ, Poland SP, Girkin JM, Freudiger CW, Evans CL, Xie XS (2007) Adaptive optics for enhanced signal in cars microscopy. Opt Express 15(26):18209–18219CrossRefPubMedGoogle Scholar
  42. 42.
    Lombardini A, Mytskaniuk V, Sivankutty S, Andresen ER, Chen X, Wenger J, Fabert M, Joly N, Louradour F, Kudlinski A, Rigneault H (2018) High-resolution multimodal flexible coherent raman endoscope. Light: Sci Appl 7(1):aaa8870Google Scholar
  43. 43.
    Lukic A, Dochow S, Bae H, Matz G, Latka I, Messerschmidt B, Schmitt M, Popp J (2017) Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica 4(5):496Google Scholar
  44. 44.
    Haohua T, Boppart SA (2014) Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. J Biophotonics 7(1–2):9–22Google Scholar
  45. 45.
    Zirak P, Matz G, Messerschmidt B, Meyer T, Schmitt M, Popp J, Uckermann O, Galli R, Kirsch M, Winterhalder MJ, Zumbusch A (2018) Invited article: a rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view. APL Photonics 3(9):092409Google Scholar
  46. 46.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76Google Scholar
  47. 47.
    Hellwarth R, Christensen P (1974) Nonlinear optical microscopic examination of structure in polycrystalline znse. Opt Commun 12(3):318–322CrossRefGoogle Scholar
  48. 48.
    Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70(8):922–924Google Scholar
  49. 49.
    Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW (2003) Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci 100(12):7075–7080Google Scholar
  50. 50.
    Richards-Kortum R, Sevick-Muraca E (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47(1):555–606CrossRefPubMedGoogle Scholar
  51. 51.
    Meyer T, Guntinas-Lichius O, von Eggeling F, Ernst G, Akimov D, Schmitt M, Dietzek B, Popp J (2013) Multimodal nonlinear microscopic investigations on head and neck squamous cell carcinoma: toward intraoperative imaging. Head Neck 35(9):E280–E287CrossRefPubMedGoogle Scholar
  52. 52.
    Fine S, Hansen WP (1971) Optical second harmonic generation in biological systems. Appl Opt 10(10):2350–2353CrossRefPubMedGoogle Scholar
  53. 53.
    Pavone FS, Campagnola PJ (2013) Second harmonic generation imaging. CRC PressGoogle Scholar
  54. 54.
    Mohler W, Millard AC, Campagnola PJ (2003) Second harmonic generation imaging of endogenous structural proteins. Methods 29(1):97–109Google Scholar
  55. 55.
    Cicchi R, Vogler N, Kapsokalyvas D, Dietzek B, Popp J, Pavone FS (2013) From molecular structure to tissue architecture: collagen organization probed by SHG microscopy. J Biophotonics 6:129–142Google Scholar
  56. 56.
    Müller M, Squier J, Wilson KR, Brakenhoff GJ (1998) 3d microscopy of transparent objects using third-harmonic generation. J Microsc 191(3):266–274CrossRefPubMedGoogle Scholar
  57. 57.
    Débarre D, Supatto W, Pena A-M, Fabre A, Tordjmann T, Combettes L, Schanne-Klein M-C, Beaurepaire E (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3(1):47CrossRefPubMedGoogle Scholar
  58. 58.
    Weigelin B, Bakker G-J, Friedl P (2016) Third harmonic generation microscopy of cells and tissue organization. J Cell Sci jcs–152272Google Scholar
  59. 59.
    Heuke S, Vogler N, Meyer T, Akimov D, Kluschke F, Röwert-Huber H-J, Lademann J, Dietzek B, Popp J (2013) Multimodal mapping of human skin. Br J Dermatol 169(4):794–803CrossRefPubMedGoogle Scholar
  60. 60.
    Adur J, Carvalho HF, Cesar CL, Casco VH (2014) Nonlinear optical microscopy signal processing strategies in cancer. Cancer Inf 13:CIN–S12419Google Scholar
  61. 61.
    Richards-Kortum R, Sevick-Muraca E (1996) Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606CrossRefPubMedGoogle Scholar
  62. 62.
    Elson D, Requejo-Isidro J, Munro I, Reavell F, Siegel J, Suhling K, Tadrous P, Benninger R, Lanigan P, McGinty J, Talbot C, Treanor B, Webb S, Sandison A, Wallace A, Davis D, Lever J, Neil M, Phillips D, Stamp G, French P (2004) Time-domain fluorescence lifetime imaging applied to biological tissue. Photochem Photobiol Sci: Off J Eur Photochem Assoc Eur Soc Photobiol 3(8):795–801CrossRefGoogle Scholar
  63. 63.
    Lakowicz JR (2010) Principles of fluorescence spectroscopy. 3 edn [4. corr. print.] edn. Springer, New YorkGoogle Scholar
  64. 64.
    Das BB, Liu F, Alfano RR (1997) Time-resolved fluorescence and photon migration studies in biomedical and model random media. Rep Prog Phys 60(2):227Google Scholar
  65. 65.
    Dowling K, Dayel MJ, Lever MJ, French PMW, Hares JD, Dymoke-Bradshaw AKL (1998) Fluorescence lifetime imaging with picosecond resolution for biomedical applications. Opt Lett 23(10):810–812CrossRefPubMedGoogle Scholar
  66. 66.
    Bower AJ, Li J, Chaney EJ, Marjanovic M, Spillman DR, Boppart SA (2018) High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy. Optica 5(10):1290–1296CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Liu J, Sun Y, Qi J, Marcu L (2012) A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with laguerre expansion. Phys Med Biol 57(4):843CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Valeur B (2001) Molecular fluorescence. Wiley-VCH Verlag GmbH, Weinheim, FRGCrossRefGoogle Scholar
  69. 69.
    Skala MC, Riching KM, Bird DK, Gendron-Fitzpatrick A, Eickhoff Jens, Eliceiri KW, Keely PJ, Ramanujam N (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. J Biomed Opt 12(2):024014CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR (2014) Separating nadh and nadph fluorescence in live cells and tissues using flim. Nat Commun 5:3936CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bocklitz T, Schmitt M, Popp J (2014) Ex-vivo and in-vivo optical molecular pathology. In: Image processing—chemometric approaches to analyze optical molecular images, Wiley-VCH Verlag GmbH and Co. KGaA, pp 215–248Google Scholar
  72. 72.
    Bishop CM (2011) Pattern recognition and machine learning. Information Science and Statistics, SpringerGoogle Scholar
  73. 73.
    Tauler R, Walczak B, Brown SD (eds) (2009) Comprehensive chemometrics: chemical and biochemical data analysis. ElsevierGoogle Scholar
  74. 74.
    Dörfer T, Bocklitz T, Tarcea N, S M, Popp J (2011) Checking and improving calibration of Raman spectra using chemometric approaches. ZPC (Zeitschrift fur Physikalische Chemie) 225:753–764CrossRefGoogle Scholar
  75. 75.
    Vartiainen EM, Rinia HA, Muller M, Bonn M (2006) Direct extraction of Raman line-shapes from congested CARS spectra. Opt Express 14(8):3622–3630Google Scholar
  76. 76.
    Bocklitz T, Walter A, Hartmann K, R P, Popp J (2011) How to pre-process Raman spectra for reliable and stable models? Anal Chim Acta 704:47–56CrossRefPubMedGoogle Scholar
  77. 77.
    Chernavskaia O, Bocklitz T, Meyer T, Vogler N, Akimov D, Heuke S, Guo S, Heintzmann R, Popp J (2017) Correction of mosaicking artefacts in multimodal images caused by uneven illumination. J Chemom 31(6):e2901CrossRefGoogle Scholar
  78. 78.
    Suhling K, Hirvonen LM, Levitt JA, Chung PH, Tregidgo C, Le Marois A, Rusakov DA, Zheng K, Ameer-Beg S, Poland S et al (2015) Fluorescence lifetime imaging (flim): basic concepts and some recent developments. Med Photonics 27:3–40Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Thomas Bocklitz
    • 1
    Email author
  • Anja Silge
    • 1
  • Hyeonsoo Bae
    • 1
  • Marko Rodewald
    • 1
  • Fisseha Bekele Legesse
    • 1
  • Tobias Meyer
    • 1
  • Jürgen Popp
    • 1
    Email author
  1. 1.University of JenaIPCJenaGermany

Personalised recommendations