Clinical PET/MR

  • Wolfgang WeberEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)


Oncologic imaging has been a major focus of clinical research on PET/MR over the last 10 years. Studies so far have shown that PET/MR with 18F-Fluorodeoxyglucose (FDG) overall provides a similar accuracy for tumor staging as FDG PET/CT. The effective radiation dose of whole-body FDG PET/MR is more than 50% lower than for FDG PET/CT, making PET/MR particularly attractive for imaging of children. However, the longer acquisition times and higher costs have so far limited broader clinical use of PET/MR technology for whole-body staging. With the currently available technology, PET/MR appears more promising for locoregional staging of diseases for which MR is the anatomical imaging modality of choice. These include brain tumors, head and neck cancers, gynecologic malignancies, and prostate cancer. For instance, PET imaging with ligands of prostate-specific membrane antigen, combined with multi-parametric MR, appears promising for detection of prostate cancer and differentiation from benign prostate pathologies as well as for detection of local recurrences. The combination of functional parameters from MR, such as apparent diffusion coefficients, and molecular parameters from PET, such as receptor densities or metabolic rates, is feasible in clinical studies, but clinical applications for this multimodal and multi-parametric imaging approach still need to be defined.


PET/MR PET/MRI MR/PET Fluorodeoxyglucose FDG Multimodal imaging Prostate-specific membrane antigen PSMA 


  1. 1.
    Bailey DL, Barthel H, Beyer T, Boellaard R, Guckel B, Hellwig D et al (2013) Summary report of the first international workshop on PET/MR imaging, March 19–23, 2012, Tubingen, Germany. Mol Imaging Biol 15:361–371PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bailey DL, Antoch G, Bartenstein P, Barthel H, Beer AJ, Bisdas S et al (2015) Combined PET/MR: the real work has just started. In: Summary report of the third international workshop on PET/MR imaging, 17–21 February 2014, Tubingen, Germany. Mol Imaging Biol 17:297–312Google Scholar
  3. 3.
    Grueneisen J, Schaarschmidt BM, Heubner M, Suntharalingam S, Milk I, Kinner S et al (2015) Implementation of FAST-PET/MRI for whole-body staging of female patients with recurrent pelvic malignancies: a comparison to PET/CT. Eur J Radiol 84:2097–2102Google Scholar
  4. 4.
    Grueneisen J, Sawicki LM, Schaarschmidt BM, Suntharalingam S, von der Ropp S, Wetter A et al (2016) Evaluation of a fast protocol for staging lymphoma patients with integrated PET/MRI. PLoS ONE 11:e0157880PubMedPubMedCentralGoogle Scholar
  5. 5.
    Grueneisen J, Sawicki LM, Wetter A, Kirchner J, Kinner S, Aktas B et al (2017) Evaluation of PET and MR datasets in integrated 18F-FDG PET/MRI: a comparison of different MR sequences for whole-body restaging of breast cancer patients. Eur J Radiol 89:14–19PubMedGoogle Scholar
  6. 6.
    Kirchner J, Sawicki LM, Suntharalingam S, Grueneisen J, Ruhlmann V, Aktas B et al (2017) Whole-body staging of female patients with recurrent pelvic malignancies: ultra-fast 18F-FDG PET/MRI compared to 18F-FDG PET/CT and CT. PLoS ONE 12:e0172553PubMedPubMedCentralGoogle Scholar
  7. 7.
    Spick C, Herrmann K, Czernin J (2016) 18F-FDG PET/CT and PET/MRI perform equally well in cancer: evidence from studies on more than 2,300 patients. J Nucl Med 57:420–430PubMedPubMedCentralGoogle Scholar
  8. 8.
    Kuhn FP, Hullner M, Mader CE, Kastrinidis N, Huber GF, von Schulthess GK et al (2014) Contrast-enhanced PET/MR imaging versus contrast-enhanced PET/CT in head and neck cancer: how much MR information is needed? J Nucl Med 55:551–558Google Scholar
  9. 9.
    Hayashi K, Kikuchi M, Imai Y, Yamashita D, Hino M, Ito K et al (2019) Clinical value of fused PET/MRI for surgical planning in patients with oral/oropharyngeal carcinoma. LaryngoscopeGoogle Scholar
  10. 10.
    Kubiessa K, Purz S, Gawlitza M, Kuhn A, Fuchs J, Steinhoff KG et al (2014) Initial clinical results of simultaneous 18F-FDG PET/MRI in comparison to 18F-FDG PET/CT in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 41:639–648PubMedGoogle Scholar
  11. 11.
    Platzek I (2016) (18)F-Fluorodeoxyglucose PET/MR imaging in head and neck cancer. PET Clin 11:375–386PubMedGoogle Scholar
  12. 12.
    Schaarschmidt BM, Heusch P, Buchbender C, Ruhlmann M, Bergmann C, Ruhlmann V et al (2016) Locoregional tumour evaluation of squamous cell carcinoma in the head and neck area: a comparison between MRI, PET/CT and integrated PET/MRI. Eur J Nucl Med Mol Imaging 43:92–102PubMedGoogle Scholar
  13. 13.
    Sekine T, de Galiza Barbosa F, Kuhn FP, Burger IA, Stolzmann P, Huber GF et al (2017) PET + MR versus PET/CT in the initial staging of head and neck cancer, using a trimodality PET/CT + MR system. Clin Imaging 42:232–239PubMedGoogle Scholar
  14. 14.
    Szyszko TA, Cook GJR (2018) PET/CT and PET/MRI in head and neck malignancy. Clin Radiol 73:60–69PubMedGoogle Scholar
  15. 15.
    Hope TA, Pampaloni MH, Nakakura E, VanBrocklin H, Slater J, Jivan S et al (2015) Simultaneous (68)Ga-DOTA-TOC PET/MRI with gadoxetate disodium in patients with neuroendocrine tumor. Abdom Imaging 40:1432–1440PubMedGoogle Scholar
  16. 16.
    Kirchner J, Sawicki LM, Deuschl C, Gruneisen J, Beiderwellen K, Lauenstein TC et al (2017) 18 F-FDG PET/MR imaging in patients with suspected liver lesions: value of liver-specific contrast agent Gadobenate dimeglumine. PLoS ONE 12:e0180349PubMedPubMedCentralGoogle Scholar
  17. 17.
    Mayerhoefer ME, Ba-Ssalamah A, Weber M, Mitterhauser M, Eidherr H, Wadsak W et al (2013) Gadoxetate-enhanced versus diffusion-weighted MRI for fused Ga-68-DOTANOC PET/MRI in patients with neuroendocrine tumours of the upper abdomen. Eur Radiol 23:1978–1985PubMedGoogle Scholar
  18. 18.
    Lee DH, Lee JM, Hur BY, Joo I, Yi NJ, Suh KS et al (2016) Colorectal cancer liver metastases: diagnostic performance and prognostic value of PET/MR imaging. Radiology 280:782–792Google Scholar
  19. 19.
    Reiner CS, Stolzmann P, Husmann L, Burger IA, Hullner MW, Schaefer NG et al (2014) Protocol requirements and diagnostic value of PET/MR imaging for liver metastasis detection. Eur J Nucl Med Mol Imaging 41:649–658PubMedGoogle Scholar
  20. 20.
    Beiderwellen K, Geraldo L, Ruhlmann V, Heusch P, Gomez B, Nensa F et al (2015) Accuracy of [18F]FDG PET/MRI for the detection of liver metastases. PLoS ONE 10:e0137285PubMedPubMedCentralGoogle Scholar
  21. 21.
    Sawicki LM, Kirchner J, Grueneisen J, Ruhlmann V, Aktas B, Schaarschmidt BM et al (2018) Comparison of (18)F-FDG PET/MRI and MRI alone for whole-body staging and potential impact on therapeutic management of women with suspected recurrent pelvic cancer: a follow-up study. Eur J Nucl Med Mol Imaging 45:622–629PubMedGoogle Scholar
  22. 22.
    Grueneisen J, Nagarajah J, Buchbender C, Hoffmann O, Schaarschmidt BM, Poeppel T et al (2015) Positron emission tomography/magnetic resonance imaging for local tumor staging in patients with primary breast cancer: a comparison with positron emission tomography/computed tomography and magnetic resonance imaging. Invest Radiol 50:505–513PubMedGoogle Scholar
  23. 23.
    Pace L, Nicolai E, Luongo A, Aiello M, Catalano OA, Soricelli A et al (2014) Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 83:289–296PubMedGoogle Scholar
  24. 24.
    Botsikas D, Kalovidouri A, Becker M, Copercini M, Djema DA, Bodmer A et al (2016) Clinical utility of 18F-FDG-PET/MR for preoperative breast cancer staging. Eur Radiol 26:2297–2307PubMedGoogle Scholar
  25. 25.
    Botsikas D, Bagetakos I, Picarra M, Da Cunha Afonso Barisits AC, Boudabbous S, Montet X et al (2019) What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer? Eur Radiol 29:1787–1798Google Scholar
  26. 26.
    Wang J, Shih TT, Yen RF (2017) Multiparametric evaluation of treatment response to neoadjuvant chemotherapy in breast cancer using integrated PET/MR. Clin Nucl Med 42:506–513PubMedGoogle Scholar
  27. 27.
    Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH et al (2018) MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 378:1767–1777PubMedGoogle Scholar
  28. 28.
    Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK et al (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389:815–822PubMedGoogle Scholar
  29. 29.
    Lindenberg ML, Turkbey B, Mena E, Choyke PL (2017) Imaging locally advanced, recurrent, and metastatic prostate cancer: a review. JAMA Oncol 3:1415–1422PubMedGoogle Scholar
  30. 30.
    Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT, Turkbey B et al (2016) Interobserver reproducibility of the PI-RADS version 2 Lexicon: a multicenter study of six experienced prostate radiologists. Radiology 280:793–804PubMedPubMedCentralGoogle Scholar
  31. 31.
    Li M, Huang Z, Yu H, Wang Y, Zhang Y, Song B (2019) Comparison of PET/MRI with multiparametric MRI in diagnosis of primary prostate cancer: a meta-analysis. Eur J Radiol 113:225–231PubMedGoogle Scholar
  32. 32.
    Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I et al (2016) Simultaneous (68)Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol 70:829–836PubMedGoogle Scholar
  33. 33.
    Al-Bayati M, Grueneisen J, Lutje S, Sawicki LM, Suntharalingam S, Tschirdewahn S et al (2018) Integrated 68Gallium labelled prostate-specific membrane antigen-11 positron emission tomography/magnetic resonance imaging enhances discriminatory power of multi-parametric prostate magnetic resonance imaging. Urol Int 100:164–171PubMedGoogle Scholar
  34. 34.
    Taneja S, Jena A, Taneja R, Singh A, Ahuja A (2018) Effect of combined (68)Ga-PSMAHBED-CC uptake pattern and multiparametric MRI derived with simultaneous PET/MRI in the diagnosis of primary prostate cancer: initial experience. AJR Am J Roentgenol 210:1338–1345PubMedGoogle Scholar
  35. 35.
    Hicks RM, Simko JP, Westphalen AC, Nguyen HG, Greene KL, Zhang L et al (2018) Diagnostic accuracy of (68)Ga-PSMA-11 PET/MRI compared with multiparametric MRI in the detection of prostate cancer. Radiology 289:730–737PubMedPubMedCentralGoogle Scholar
  36. 36.
    Jambor I, Kuisma A, Kahkonen E, Kemppainen J, Merisaari H, Eskola O et al (2018) Prospective evaluation of (18)F-FACBC PET/CT and PET/MRI versus multiparametric MRI in intermediate- to high-risk prostate cancer patients (FLUCIPRO trial). Eur J Nucl Med Mol Imaging 45:355–364PubMedGoogle Scholar
  37. 37.
    Jena A, Taneja R, Taneja S, Singh A, Kumar V, Agarwal A et al (2018) Improving diagnosis of primary prostate cancer with combined (68)Ga-Prostate-Specific Membrane Antigen-HBED-CC simultaneous PET and multiparametric MRI and clinical parameters. AJR Am J Roentgenol 211:1246–1253PubMedGoogle Scholar
  38. 38.
    Lee MS, Cho JY, Kim SY, Cheon GJ, Moon MH, Oh S et al (2017) Diagnostic value of integrated PET/MRI for detection and localization of prostate cancer: comparative study of multiparametric MRI and PET/CT. J Magn Reson Imaging 45:597–609PubMedGoogle Scholar
  39. 39.
    Park SY, Zacharias C, Harrison C, Fan RE, Kunder C, Hatami N et al (2018) Gallium 68 PSMA-11 PET/MR imaging in patients with intermediate- or high-risk prostate cancer. Radiology 288:495–505PubMedGoogle Scholar
  40. 40.
    de Perrot T, Rager O, Scheffler M, Lord M, Pusztaszeri M, Iselin C et al (2014) Potential of hybrid (1)(8)F-fluorocholine PET/MRI for prostate cancer imaging. Eur J Nucl Med Mol Imaging 41:1744–1755PubMedGoogle Scholar
  41. 41.
    Muehe AM, Theruvath AJ, Lai L, Aghighi M, Quon A, Holdsworth SJ et al (2018) How to provide gadolinium-free PET/MR cancer staging of children and young adults in less than 1 h: the Stanford approach. Mol Imaging Biol 20:324–335PubMedPubMedCentralGoogle Scholar
  42. 42.
    Siegel JA, Pennington CW, Sacks B (2017) Subjecting radiologic imaging to the linear no-threshold hypothesis: a non sequitur of non-trivial proportion. J Nucl Med 58:1–6PubMedGoogle Scholar
  43. 43.
    Weber W, Zanzonico P (2017) The controversial linear no-threshold model. J Nucl Med 58:7–8PubMedGoogle Scholar
  44. 44.
    Kwatra NS, Lim R, Gee MS, States LJ, Vossough A, Lee EY (2019) PET/MR imaging: current updates on pediatric applications. Magn Reson Imaging Clin N Am 27:387–407PubMedGoogle Scholar
  45. 45.
    Schneuer FJ, Bentley JP, Davidson AJ, Holland AJ, Badawi N, Martin AJ et al (2018) The impact of general anesthesia on child development and school performance: a population-based study. Paediatr Anaesth 28:528–536PubMedGoogle Scholar
  46. 46.
    Platzek I, Beuthien-Baumann B, Schneider M, Gudziol V, Kitzler HH, Maus J et al (2014) FDG PET/MR for lymph node staging in head and neck cancer. Eur J Radiol 83:1163–1168PubMedGoogle Scholar
  47. 47.
    Chan SC, Yeh CH, Yen TC, Ng SH, Chang JT, Lin CY et al (2018) Clinical utility of simultaneous whole-body (18)F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 45:1297–1308Google Scholar
  48. 48.
    Kanda T, Kitajima K, Suenaga Y, Konishi J, Sasaki R, Morimoto K et al (2013) Value of retrospective image fusion of (18)F-FDG PET and MRI for preoperative staging of head and neck cancer: comparison with PET/CT and contrast-enhanced neck MRI. Eur J Radiol 82:2005–2010PubMedGoogle Scholar
  49. 49.
    Beiderwellen K, Grueneisen J, Ruhlmann V, Buderath P, Aktas B, Heusch P et al (2015) [(18)F]FDG PET/MRI vs. PET/CT for whole-body staging in patients with recurrent malignancies of the female pelvis: initial results. Eur J Nucl Med Mol Imaging 42:56–65Google Scholar
  50. 50.
    Grueneisen J, Beiderwellen K, Heusch P, Gratz M, Schulze-Hagen A, Heubner M et al (2014) Simultaneous positron emission tomography/magnetic resonance imaging for whole-body staging in patients with recurrent gynecological malignancies of the pelvis: a comparison to whole-body magnetic resonance imaging alone. Invest Radiol 49:808–815PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Nuclear Medicine, School of MedicineTechnical University MunichMunichGermany

Personalised recommendations