• Egesta LopciEmail author
  • Stefano Fanti
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)


The major applications for molecular imaging with PET in clinical practice concern cancer imaging. Undoubtedly, 18F-FDG represents the backbone of nuclear oncology as it remains so far the most widely employed positron emitter compound. The acquired knowledge on cancer features, however, allowed the recognition in the last decades of multiple metabolic or pathogenic pathways within the cancer cells, which stimulated the development of novel radiopharmaceuticals. An endless list of PET tracers, substantially covering all hallmarks of cancer, has entered clinical routine or is being investigated in diagnostic trials. Some of them guard significant clinical applications, whereas others mostly bear a huge potential. This chapter summarizes a selected list of non-FDG PET tracers, described based on their introduction into and impact on clinical practice.


  1. 1.
    Ackerstaff E, Pflug BR, Nelson JB et al (2001) Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61:3599–3603PubMedGoogle Scholar
  2. 2.
    Afshar-Oromieh A, Avtzi E, Giesel FL et al (2015) The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 42(2):197–209PubMedGoogle Scholar
  3. 3.
    Afshar-Oromieh A, Babich JW, Kratochwil C et al (2016) The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med 57:79S–89SPubMedGoogle Scholar
  4. 4.
    Afshar-Oromieh A, Hetzheim H, Kratochwil C et al (2015) The theranostic PSMA ligand PSMA-617 in the diagnosis of prostate cancer by PET/CT: biodistribution in humans, radiation dosimetry, and first evaluation of tumor lesions. J Nucl Med 56:1697–1705PubMedGoogle Scholar
  5. 5.
    Ahlström H, Eriksson B, Bergstrom M et al (1995) Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 195:333–337PubMedGoogle Scholar
  6. 6.
    Ahn T, Roberts MJ, Abduljabar A et al (2019) A review of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) in renal cell carcinoma. Mol Imaging Biol. (Epub ahead of print)
  7. 7.
    Albert NL, Winkelmann I, Suchorska B et al (2016) Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans. Eur J Nucl Med Mol Imaging 43:1105–1114PubMedGoogle Scholar
  8. 8.
    Albert NL, Weller M, Suchorscka B, et al (2016) Response assessment in neuro-oncology working group and European association for neuro-oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18(9):1199–1208Google Scholar
  9. 9.
    Albrecht S, Buchegger F, Soloviev D et al (2007) (11)C-Acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34:185–196PubMedGoogle Scholar
  10. 10.
    Allan RM, Pike VW, Maseri A et al (1981) Myocardial metabolism of 11C-acetate: experimental and patient studies. Circulation 64(Suppl IV):IV–75, (Abst)Google Scholar
  11. 11.
    Allan RM, Selwyn AP, Pike VW et al (1980) In vivo experimental and clinical studies of normal and ischemic myocardium using 11C-acetate. Circulation 62 (Suppl III):111–174, (Abst)Google Scholar
  12. 12.
    Ambrosini V, Campana D, Bodei L et al (2010) 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 51(5):669–673PubMedGoogle Scholar
  13. 13.
    Ambrosini V, Campana D, Tomassetti P et al (2012) 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39(Suppl 1):S52–S60PubMedGoogle Scholar
  14. 14.
    Ambrosini V, Fanti S (2014) 68Ga-DOTA-peptides in the diagnosis of NET. PET Clin. 9(1):37–42PubMedGoogle Scholar
  15. 15.
    Ambrosini V, Campana D, Nanni C et al (2012) Is 68Ga-DOTA-NOC PET/CT indicated in patients with clinical, biochemical or radiological suspicion of neuroendocrine tumour? Eur J Nucl Med Mol Imaging 39(8):1278–1283Google Scholar
  16. 16.
    Ambrosini V, Campana D, Polverani G et al (2015) Prognostic value of 68Ga-DOTANOC PET/CT SUVmax in patients with neuroendocrine tumors of the pancreas. J Nucl Med 56(12):1843–1848Google Scholar
  17. 17.
    Ambrosini V, Marzola MC, Rubello D et al (2009) (68)Ga-somatostatin analogues PET and (18)F-DOPA PET in medullary thyroid carcinoma. Eur J Nucl Med Mol ImagingGoogle Scholar
  18. 18.
    Ambrosini V, Tomassetti P, Castellucci P et al (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35(8):1431–1438Google Scholar
  19. 19.
    Antunes P, Ginj M, Zhang H et al (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34(7):982–993Google Scholar
  20. 20.
    Banerjee SR, Pullambhatla M, Byun Y et al (2010) 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J Med Chem 53:5333–5341PubMedPubMedCentralGoogle Scholar
  21. 21.
    Barrio M, Czernin J, Fanti S et al (2017) The impact of somatostatin receptor-directed PET/CT on the management of patients with neuroendocrine tumor: a systematic review and meta-analysis. J Nucl Med 58(5):756–761Google Scholar
  22. 22.
    Barthel H, Cleij MC, Collingridge DR et al (2003) 3’-Deoxy-3’-(18F)fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63:3791–3798PubMedGoogle Scholar
  23. 23.
    Barthel H, Perumal M, Latigo J et al (2005) The uptake of 3’-deoxy-3’-(18F)fluorothymidine into L178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32(3):257–263PubMedGoogle Scholar
  24. 24.
    Bauman G, Belhocine T, Kovacs M et al (2012) 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 15:45–55Google Scholar
  25. 25.
    Becherer A, Szabó M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167Google Scholar
  26. 26.
    Been LB, Suurmeijer AJH, Cobben DCP et al (2004) (18F) FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672Google Scholar
  27. 27.
    Beer AJ, Haubner R, Sarbia M et al (2006) Positron emission tomography using (18F)galacto-RGD identifi es the level of integrin αvβ3 expression in man. Clin Cancer Res 12:3942–3949Google Scholar
  28. 28.
    Bell C, Dowson N, Puttick S et al (2015) Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl Med Biol 42(10):788–795Google Scholar
  29. 29.
    Blake GM, Park-Holohan SJ, Cook GJ et al (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49PubMedGoogle Scholar
  30. 30.
    Blau M, Nagler W, Bender MA (1962) A new isotope for bone scanning. J Nucl Med 3:332–334PubMedGoogle Scholar
  31. 31.
    Bollineni VR, Kramer GM, Jansma EP et al (2016) A systematic review on ((18)F)FLT-PET uptake as a measure of treatment response in cancer patients. Eur J Cancer 55:81–97Google Scholar
  32. 32.
    Borbély K, Nyáry I, Tóth M et al (2006) Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 15:85–94Google Scholar
  33. 33.
    Borelli MI, Villar MJ, Orezzoli A et al (1997) Presence of DOPA decarboxylase and its localisation in adult rat pancreatic islet cells. Diabetes Metab 23:161–163PubMedGoogle Scholar
  34. 34.
    Bostwick DG, Pacelli A, Blute M et al (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261PubMedGoogle Scholar
  35. 35.
    Brandi G, Nannini M, Pantaleo MA et al (2008) Molecular imaging suggests efficacy of bevacizumab beyond the second line in advanced colorectal cancer patients. Chemotherapy 54(6):421–424PubMedGoogle Scholar
  36. 36.
    Braun V, Dempf S, Weller R et al (2002) Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data—results of a pilot study in 32 surgical cases. Acta Neurochir 144:777–782PubMedGoogle Scholar
  37. 37.
    Breeuwsma AJ, Pruim J, Van den Bergh AC et al (2009) Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-Choline positron emission tomography. Int J Radiat Oncol Biol PhysGoogle Scholar
  38. 38.
    Briganti A, Chun FK-H, Salonia A et al (2006) Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol 49:1019–1027PubMedGoogle Scholar
  39. 39.
    Brown JM (1999) The hypoxic cell: A target for selective cancer therapy—Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 59:5863–5870Google Scholar
  40. 40.
    Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker (18F)fluorothymidine. Clin Cancer Res 14(10):2970–2977PubMedGoogle Scholar
  41. 41.
    Buck AK, Hetzel M, Schirrmeister H et al (2005) Clinical relevance of imaging proliferative activity in lung nodules. Eur J Nucl Med Mol Imaging 32:525–533PubMedGoogle Scholar
  42. 42.
    Buck AK, Schirrmeister H, Hetzel M et al (2002) 3-Deoxy-3-(18F)fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334PubMedGoogle Scholar
  43. 43.
    Buck AK, Vogg ATJ, Glatting G et al (2004) (18F)FLT for monitoring response to antiproliferative therapy in a mouse lymphoma xenotransplant model. J Nucl Med 45:434Google Scholar
  44. 44.
    Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056PubMedGoogle Scholar
  45. 45.
    Cai W, Gambhir SS, Chen X (2008) Chapter 7. Molecular imaging of tumor vasculature. Methods Enzymol 445:141–176Google Scholar
  46. 46.
    Caldwell JH, Revenaugh JR, Martin GV et al (1995) Comparison of fluorine-18-fluorodeoxyglucose and tritiated fluoromisonidazole uptake during low-flow ischemia. J Nucl Med 36:1633–1638PubMedGoogle Scholar
  47. 47.
    Carter RE, Feldman AR, Coyle JT (1996) Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci USA 93:749–753Google Scholar
  48. 48.
    Cascini GL, Niccoli Asabella A, Notaristefano A et al (2014) 124 Iodine: a longer-life positron emitter isotope—new opportunities in molecular imaging. Biomed Res Int 2014:672094PubMedPubMedCentralGoogle Scholar
  49. 49.
    Castellucci P, Fuccio C, Rubello D et al (2011) Is there a role for 11C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase < 1,5 ng/ml? Eur J Nucl Med Mol Imaging 38(1):55–63PubMedGoogle Scholar
  50. 50.
    Castellucci P, Fuccio C, Nanni C et al (2009) Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 50(9):1394–1400Google Scholar
  51. 51.
    Castilla-Lièvre MA, Franco D, Gervais P et al (2016) Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 43(5):852–859Google Scholar
  52. 52.
    Cater DB, Silver IA (1960) Quantitative measurements of oxygen tension in normal tissues and in tumors of patients before and after radiotherapy. Acta Radiol 53:233–256PubMedGoogle Scholar
  53. 53.
    Chan JL, Lee SW, Fraass BA et al (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20(6):1635–1642PubMedGoogle Scholar
  54. 54.
    Chang SS, Reuter VE, Heston WD, Gaudin PB (2001) Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urology 57:801–805PubMedGoogle Scholar
  55. 55.
    Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952Google Scholar
  56. 56.
    Chen S, Ho C, Feng D et al (2004) Tracer kinetic modeling of 11Cacetate applied in the liver with positron emission tomography. IEEE Trans Med Imaging 23(4):426–432PubMedGoogle Scholar
  57. 57.
    Chen X, Sievers E, Hou Y et al (2005) Integrin avB3–targeted imaging of lung cancer. Neoplasia 7:271–279PubMedPubMedCentralGoogle Scholar
  58. 58.
    Chen W, Delaloye S, Silverman DHS et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with (18F) fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25(30):4714e21Google Scholar
  59. 59.
    Cheng J, Lei L, Xu J et al (2013) 18F-Fluoromi-sonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. J Nucl Med 54:333–340PubMedGoogle Scholar
  60. 60.
    Cher LM, Murone C, Lawrentschuck N et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fl uoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47:410–418PubMedGoogle Scholar
  61. 61.
    Chierichetti F, Lessi G, Bissoli S et al (2005) Preliminary experience with 11C-Acetate and PET7CT in prostate cancer. J Nucl Med (Supplement 2):46Google Scholar
  62. 62.
    Cho SY, Gage KL, Mease RC et al (2012) Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 53:1883–1891PubMedPubMedCentralGoogle Scholar
  63. 63.
    Chung JK, Kim YK, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182Google Scholar
  64. 64.
    Cimitan M, Bortolus R, Morassut S et al (2006) (18F)fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33(12):1387–1398PubMedGoogle Scholar
  65. 65.
    Cobben DC, Elsinga PH, Hoekstra HJ et al (2004) Is 18F-3’-fl uoro-3’-deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 45:1677–1682PubMedGoogle Scholar
  66. 66.
    Coenen HH, Kling P, Stocklin G (1989) Cerebral metabolism of L-(2-18F)fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med 30:1367–1372PubMedGoogle Scholar
  67. 67.
    Comar D, Cartron JC, Maziere M et al (1976) La belling and metabolism of methionine-methyl-11C. Eur J Nucl Med 1:11–14Google Scholar
  68. 68.
    Cook GJ, Maisey MN, Fogelman I (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fl uoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 26:1363–1378PubMedGoogle Scholar
  69. 69.
    Crabtree HG, Cramer W (1933) The action of radium on cancer cells I and II. Some factors determining the susceptibility of cancer cells to radium. Proc R Soc Ser B 113:238–250Google Scholar
  70. 70.
    De Jong IJ, Pruim J, Elsinga PH et al (2002) Visualization of bladder cancer using 11C-choline PET: first clinical experience. Eur J Nucl Med 29:1283–1288Google Scholar
  71. 71.
    DeGrado TR, Coleman RE, Wang S et al (2001) Synthesis and evaluation of 18F labeled choline as an oncologic tracer for positron emission tomography: Initial findings in prostate cancer. Cancer Res 61:110–117PubMedGoogle Scholar
  72. 72.
    Dearling JLD, Lewis JS, Mullen GE et al (1998) Design of hypoxia-targeting radiopharmaceuticals: Selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur J Nucl Med 25:788–792PubMedGoogle Scholar
  73. 73.
    Dearling JL, Lewis JS, Mullen GE et al (2002) Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents: structure-activity relationships. J Biol Inorg Chem 7:249–259PubMedGoogle Scholar
  74. 74.
    Dearling JLJ, Lewis JS, Welch MJ et al (1998) Redox-active complexes for imaging hypoxic tissues: Structure-activity relationships in copper(II)bis(thiosemicarbazone) complexes. Chem Commun 22:2531–2533Google Scholar
  75. 75.
    Dehdashti F, Grigsby PW, Mintun MA et al (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response—a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238PubMedGoogle Scholar
  76. 76.
    Dehdashti F, Mintun MA, Lewis JS et al (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–850PubMedGoogle Scholar
  77. 77.
    Delbeke D, Pinson CW (2003) 11C-acetate: a new tracer for the evaluation of hepatocellular carcinoma. J Nucl Med 44:222–223PubMedGoogle Scholar
  78. 78.
    Derlon JM, Bourdet C, Bustany P et al (1989) (11C)L-methionine uptake in gliomas. Neurosurgery 25:720–728PubMedGoogle Scholar
  79. 79.
    Dimitrakopoulou-Strauss A, Strauss LG (2003) PET imaging of prostate cancer with 11C-acetate. J Nucl Med 44:556–558PubMedGoogle Scholar
  80. 80.
    Dimitrakopoulou-Strauss A, Strauss LG, Burger C (2001) Quantitative PET studies in pretreated melanoma patients: a comparison of 6-(18F)fluoro-L-dopa with 18F-FDG and (15)O-water using compartment and noncompartment analysis. J Nucl Med 42(2):248–256Google Scholar
  81. 81.
    Dittman H, Dohmen BM, Paulsen F et al (2003) (18F)FLT PET for diagnosis and staging of thoracic tumours. Eur J Nucl Med Mol Imaging 30:1407–1412Google Scholar
  82. 82.
    Dunet V, Rossier C, Buck A et al (2012) Performance of 18F-fluoro-ethyl-tyrosine (18F-FET) PET for the differential diagnosis of primary brain tumor: a systematic review and metaanalysis. J Nucl Med 53:207–214PubMedGoogle Scholar
  83. 83.
    Eder M, Schafer M, Bauder-Wust U et al (2012) 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 23:688–697Google Scholar
  84. 84.
    Ehlerding EB, England CG, Majewski RL et al (2017) ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm 14(5):1782–1789PubMedPubMedCentralGoogle Scholar
  85. 85.
    Eiber M, Maurer T, Beer AJ et al (2014) Prospective evaluation of PSMA-PET imaging for preoperative lymph node staging in prostate cancer. J Nucl Med 55(Suppl 1):20Google Scholar
  86. 86.
    Eiber M, Maurer T, Souvatzoglou M et al (2015) Evaluation of hybrid 68Ga-PSMA Ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 56:668–674Google Scholar
  87. 87.
    Eidelberg D (1992) Positron emission tomography studies in parkinsonism. Neurol Clin 10:421–433PubMedGoogle Scholar
  88. 88.
    Eriksson B, Bergstrom M, Sundin A et al (2002) The role of PET in localization of neuroendocrine and adrenocortical tumors. Ann NY Acad Sci 970:159–169PubMedGoogle Scholar
  89. 89.
    Eschmann SM, Reischl G, Bilger K et al (2002) Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 29:760–767PubMedGoogle Scholar
  90. 90.
    Eshuis SA, Jager PL, Maguire RP et al (2009) Direct comparison of FP-CIT SPECT and F- DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging 36:454–462PubMedGoogle Scholar
  91. 91.
    Eshuis SA, Maguire RP, Leenders KL et al (2006) Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging 33(2):200–209Google Scholar
  92. 92.
    Evangelista L, Bertoldo F, Boccardo F et al (2016) Diagnostic imaging to detect and evaluate response to therapy in bone metastases from prostate cancer: current modalities and new horizons. Eur J Nucl Med Mol Imaging 43(8):1546–1562PubMedGoogle Scholar
  93. 93.
    Evangelista L, Briganti A, Fanti S, et al (2016) New clinical indications for (18)F/(11)C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol 70(1):161–175Google Scholar
  94. 94.
    Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med 45:272–278Google Scholar
  95. 95.
    Even-Sapir E, Metser U, Mishani E et al (2006) The Detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-Fluoride PET, and 18F-Fluoride PET/CT. J Nucl Med 47:287–297Google Scholar
  96. 96.
    Fanti S, Nanni C, Ambrosini V et al (2007) PET in genitourinary tract cancers. Q J Nucl Med Mol Imaging 51(3):260–271PubMedGoogle Scholar
  97. 97.
    Farsad M, Schiavina R, Castellucci P et al (2005) Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10): 1642–1649Google Scholar
  98. 98.
    Fedorova OS, Kuznetsova OF, Shatik SV et al (2009) (18)F-labeled tyrosine derivatives: synthesis and experimental studies on accumulation in tumors and abscesses. Bioorg Khim 35(3):334–343PubMedGoogle Scholar
  99. 99.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803Google Scholar
  100. 100.
    Ferrara N (2004) Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 25:581–611PubMedGoogle Scholar
  101. 101.
    Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 94:209–231Google Scholar
  102. 102.
    Fiebrich HB, Brouwers AH, Kerstens MN et al (2009) 6-(F-18)Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 94(10):3922–3930Google Scholar
  103. 103.
    Firnau G, Chiakal R, Garnett ES (1984) Aromatic radiofluorination with 18F fluorine gas: 6-(18F)fluoro-L-dopa. J Nucl Med 25:1228–1233PubMedGoogle Scholar
  104. 104.
    Floeth FW, Pauleit D, Sabel M et al (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48:519–527PubMedGoogle Scholar
  105. 105.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat. Rev Drug Discov 6:273–286PubMedGoogle Scholar
  106. 106.
    Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of (18F)3’-deoxy-3’-fluorothymidine versus (18F)fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Me Mol Imaging 30(7):988–994Google Scholar
  107. 107.
    Freudenberg LS, Antoch G, Jentzen W et al (2004) Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 14:2092–2098PubMedGoogle Scholar
  108. 108.
    Freudenberg LS, Antoch G, Jentzen W et al (2004) Value of (124)I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 14(11):2092–2098Google Scholar
  109. 109.
    Fuccio C, Castellucci P, Schiavina R et al (2010) Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 24(6):485–492PubMedGoogle Scholar
  110. 110.
    Fujibayashi Y, Taniuchi H, Yonekura Y et al (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160PubMedGoogle Scholar
  111. 111.
    Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48(4):508–518PubMedGoogle Scholar
  112. 112.
    Gabriel M, Andergassen U, Putzer D et al (2010) Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 54(1):92–99Google Scholar
  113. 113.
    Galldiks N, Ullrich R, Schroeter M et al (2010) Volumetry of ((11)C)-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme. Eur J Nucl Med Mol Imaging 37:84–92PubMedGoogle Scholar
  114. 114.
    Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedGoogle Scholar
  115. 115.
    Gazdar AF, Helman LJ, Israel MA et al (1988) Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res 48:4078–4082PubMedGoogle Scholar
  116. 116.
    Giesel FL, Hadaschik B, Cardinale J et al (2016) F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging 44:678–688PubMedPubMedCentralGoogle Scholar
  117. 117.
    Ginj M, Zhang H, Waser B et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103:16436–16441PubMedPubMedCentralGoogle Scholar
  118. 118.
    Giovacchini G, Giovannini E, Riondato M, Ciarmiello A (2018) PET/CT With 68Ga-PSMA in prostate cancer: radiopharmaceutical background and clinical implications. Curr Radiopharm 11(1):4–13PubMedGoogle Scholar
  119. 119.
    Giovacchini G, Picchio M, Coradeschi E et al (2008) ((11)C)choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6):1065–1073Google Scholar
  120. 120.
    Goldman S, Levivier M, Pirotte B et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462PubMedGoogle Scholar
  121. 121.
    Goodman MM, Keil R, Shoup TM et al (1997) Fluorine-18-FPCT: a PET radiotracer for imaging dopamine transporters. J Nucl Med 38:119–126PubMedGoogle Scholar
  122. 122.
    Gourgiotis L, Sarlis NJ, Reynolds JC et al (2003) Localization of medullary thyroid carcinoma metastasis in a multiple endocrine neoplasia type 2A Patient by 6-(18F)-Fluorodopamine positron emission tomography. J Clin Endocrinol Metab 88(2):637–641Google Scholar
  123. 123.
    Grant FD, Fahey FH, Packard AB et al (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49(1):68–78Google Scholar
  124. 124.
    Grassi I, Nanni C, Cicoria G et al (2014) Usefulness of 64Cu-ATSM in head and neck cancer: a preliminary prospective study. Clin Nucl Med 39:e59–e63PubMedGoogle Scholar
  125. 125.
    Gray LH, Conger AD, Ebert M et al (1953) Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648Google Scholar
  126. 126.
    Grosu AL, Weber WA, Riedel E et al (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63(1):64–74Google Scholar
  127. 127.
    Groves AM, Win Th, Ben Haim S et al (2007) Non-(18F)FDG PET in clinical oncology. Lancet Oncol 8:822–830PubMedGoogle Scholar
  128. 128.
    Gumprecht H, Grosu AL, Souvatsoqlou M et al (2007) 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas. Zentralbl Neurochir 68:19–23PubMedGoogle Scholar
  129. 129.
    Han S, Woo S, Kim YJ, Suh CH (2018) Impact of 68Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analysis. Eur Urol 74(2):179–190Google Scholar
  130. 130.
    Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995PubMedGoogle Scholar
  131. 131.
    Hara T, Kosaka N, Kishi H (2002) Development of (18F)-Fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187–199PubMedGoogle Scholar
  132. 132.
    Hara T, Yuasa M, Yoshida H (1997) Automated synthesis of fluorine-18 labeled choline analogue: 2-fluoroethyl- dimethyl-2-oxyethylammonium (abstract). J Nucl Med 38:44PGoogle Scholar
  133. 133.
    Hara, T, Kosada N, Kondo T et al (1997) Imaging of brain tumor, lung cancer, esophageal cancer, colon cancer, prostate cancer and bladder cancer with (C-11)choline. J Nucl Med 38:250P (Abstract)Google Scholar
  134. 134.
    Hara T, Kondo T, Hara T et al (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99(3):474–479Google Scholar
  135. 135.
    Hardy O, Hernandez-Pampaloni M, Saffer JR et al (2007) Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 150(2):140–145Google Scholar
  136. 136.
    Hardy OT, Hernandez-Pampaloni M, Saffer JR et al (2007) Accuracy of (18F)fluorodopa positron emission tomography for diagnosing and localizing focal congenital hyperinsulinism. J Clin Endocrinol Metab 92(12):4706–4711Google Scholar
  137. 137.
    Haseebuddin M, Dehdashti F, Siegel BA et al (2013) 11C-acetate PET-CT before radical prostatectomy: Nodal staging and treatment failure prediction. J Nucl Med 54(5):699–706PubMedPubMedCentralGoogle Scholar
  138. 138.
    Hatazawa J, Ishiwata K, Itoh M et al (1989) Quantitative evaluation of L-(methyl-C-11)methionine uptake in tumor using positron emission tomography. J Nucl Med 30:1809–1813PubMedGoogle Scholar
  139. 139.
    Heiss P, Mayer S, Herz M et al (1999) Investigation of transport mechanism and uptake kinetics of O-(2-18F-fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40:1367–1373PubMedGoogle Scholar
  140. 140.
    Heiss WD, Wienhard K, Wagner R et al (1996) F-Dopa as an amino acid tracer to detect brain tumours. J Nucl Med 37(7):1180–1182PubMedGoogle Scholar
  141. 141.
    Herholz K, Hölzer T, Bauer B et al (1998) 11-C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322PubMedGoogle Scholar
  142. 142.
    Herrmann K, Bluemel C, Weineisen M et al (2015) Biodistribution and radiation dosimetry for a probe targeting prostate-specific membrane antigen for imaging and therapy. J Nucl Med 56:855–861PubMedPubMedCentralGoogle Scholar
  143. 143.
    Herrmann K, Buck AK, Schuster T et al (2011) Predictive value of initial18F-FLT uptake in patients with aggressive non-hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med 52(5):690–696PubMedGoogle Scholar
  144. 144.
    Herrmann K, Buck AK, Schuster T et al (2014) Week one FLT-PET response predicts complete remission to R-CHOP and survival in DLBCL. Oncotarget 5(12):4050–4059PubMedPubMedCentralGoogle Scholar
  145. 145.
    Herrmann K, Takei T, Kanegae K et al (2009) Clinical value and limitations of 11(C)-Methionine PET for detection and localization of suspected parathyroid adenomas. Mol Imaging Biol 11(5):356–363Google Scholar
  146. 146.
    Hettich M, Braun F, Bartholoma MD et al (2016) High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10):1629–1640PubMedPubMedCentralGoogle Scholar
  147. 147.
    Hetzel M, Arslandemir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-eff ectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214PubMedGoogle Scholar
  148. 148.
    Hicks RJ, Rischin D, Fisher R et al (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32:1384–1391PubMedGoogle Scholar
  149. 149.
    Higashikawa K, Yagi K, Watanabe K et al (2014) 64Cu-DOTA-Anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-Cell infiltrating tumor tissues. PLoS ONE 9(11):e109866PubMedPubMedCentralGoogle Scholar
  150. 150.
    Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221Google Scholar
  151. 151.
    Ho CL, Chen S, Yeung DW et al (2007) Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med 48(6):902–909Google Scholar
  152. 152.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedPubMedCentralGoogle Scholar
  153. 153.
    Hoeben BAW, Troost EGC, Span PN et al (2013) 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med 54(4):532e40Google Scholar
  154. 154.
    Hoegerle S, Altehoefer C, Ghanem N et al (2001) Whole Body 18F-DOPA PET for detection of gastrointestinal carcinoid tumors. Radiology 220:373–380PubMedGoogle Scholar
  155. 155.
    Hoegerle S, Altehoefer C, Ghanem N et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1):64–71Google Scholar
  156. 156.
    Hoegerle S, Ghanem N, Altehoefer C et al (2003) 18F-DOPA positron emission tomography for the detection of glomus tumours. Eur J Nucl Med Mol Imaging 30(5):689–694Google Scholar
  157. 157.
    Hoegerle S, Nitzsche E, Altehoefer C et al (2002) Pheochromocytomas: detection with 18F DOPA whole body PET—initial results. Radiology 222(2):507–512Google Scholar
  158. 158.
    Hoffman RM (1984) Altered methionine metabolism, DNA methylation and oncogenic expression in carcinogenesis. Biochem Biophys Acta 738:49–87PubMedGoogle Scholar
  159. 159.
    Hofman MS, Iravani A (2017) Gallium-68Prostate-specific membrane antigen PET imaging. PET Clin 12(2):219–234Google Scholar
  160. 160.
    Howard BV, Howard WJ (1975) Lipids in normal and tumor cells in culture. Prog Biochem Pharmacol 10:135–166PubMedGoogle Scholar
  161. 161.
    Huang MC, Shih MH, Chung WY et al (2005) Malignancy of intracerebral lesions evaluated with 11C-methionine-PET. J Clin Neurosci 12:775–780PubMedGoogle Scholar
  162. 162.
    Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of ((18)F)-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263Google Scholar
  163. 163.
    Hustinx R, Pourdehnad M, Kaschten B et al (2005) PET imaging for differentiating recurrent brain tumours from radiation necrosis. Radiol Clin North Am 43:35–47PubMedGoogle Scholar
  164. 164.
    Hwang KH, Choi DJ, Lee SY et al (2009) Evaluation of patients with hepatocellular carcinomas using ((11)C)acetate and ((18)F)FDG PET/CT: A preliminary study. Appl Radiat Isot 67(7–8):1195–1198PubMedGoogle Scholar
  165. 165.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687Google Scholar
  166. 166.
    Imani F, Agopian VG, Auerbach MS et al (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50(4):513–519Google Scholar
  167. 167.
    Israeli RS, Powell CT, Corr JG et al (1994) Expression of the prostate-specific membrane antigen. Cancer Res 54:1807–1811Google Scholar
  168. 168.
    Ito Y, Fujita M, Shimada S et al (1999) Comparison between the decrease of dopamine transporter and that of L-DOPA uptake for detection of early to advanced stage of Parkinson’s disease in animal models. Synapse 31:178–185PubMedGoogle Scholar
  169. 169.
    Iwai Y, Yamanaka K, Oda J et al (2001) Tracer accumulation in radiation necrosis of the brain after thallium-201 SPECT and (11C)methionine PET: case report. Neurol Med Chir (Tokyo) 41:415–418Google Scholar
  170. 170.
    Iwata Y, Shiomi S, Sasaki N et al (2000) Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med 14:121–126PubMedGoogle Scholar
  171. 171.
    Jacob T, Grahek D, Younsi N et al (2003) Positron emission tomography with (18F)FDOPA and (18F)FDG in the imaging of small cell lung carcinoma: preliminary results. Eur J Nucl Med Mol Imaging 30:1266–1269Google Scholar
  172. 172.
    Jager PL, Vaalburg W, Pruim J et al (2001) Radiolabeled amino acids: Basic aspects and clinical applications in oncology. J Nucl Med 42(3):432–445Google Scholar
  173. 173.
    Jeong JM, Hong MK, Chang YS et al (2008) Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49(5):830–836Google Scholar
  174. 174.
    De Jong I, Pruim J, Elsinga PH et al (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32–38PubMedGoogle Scholar
  175. 175.
    Josse O, Labar D, Georges B, Gregoire V, Marchand-Brynaert J (2001) Synthesis of (18F)-labeled EF3 (2-(2-Nitroimidazol-1yl)-N-(3,3,3-trifluoropropyl)-acetamide), a Marker fro PET Detection of Hypoxia. Bioorg Med Chem 9:665–675Google Scholar
  176. 176.
    Kahraman D, Holstein A, Scheffler M et al (2012) Tumor lesion glycolysis and tumor lesion proliferation for response prediction and prognostic differentiation in patients with advanced non-small cell lung cancer treated with erlotinib. Clin Nucl Med 37(11):1058–1064PubMedGoogle Scholar
  177. 177.
    Kaim AH, Weber B, Kurrer MO et al (2002) 18F-FDG and 18F-FET uptake in experimental soft tissue infection. Eur J Nucl Med Mol Imaging 29:648–654PubMedGoogle Scholar
  178. 178.
    Kameyama M, Shirane R, Itoh J et al (1990) The accumulation of 11C-methionine in cerebral glioma patients studied with PET. Acta Neurochir (Wien) 104:8–12Google Scholar
  179. 179.
    Kang DE, White RL Jr, Zuger JH et al (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171:1806–1809PubMedGoogle Scholar
  180. 180.
    Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18- fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785PubMedGoogle Scholar
  181. 181.
    Kato TJ, Shinoda N, Oka K et al (2008) Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. Am J Neuroradiol 29:1867–1871Google Scholar
  182. 182.
    Kayani I, Groves AM (2006) 18F-fl uorodeoxyglucose PET/CT in cancer imaging. Clin Med 6:240–244Google Scholar
  183. 183.
    Kelloff GJ, Hoff man JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and drug development. Clin Cancer Res 11:2785–2808PubMedGoogle Scholar
  184. 184.
    Kenny LM, Vigushin DM, Al-Nahhas A et al (2005) Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by (18F)fluorothymidine-positron emission tomography imaging: evaluation of analytical methods. Cancer Res 65(21):10104–10112PubMedGoogle Scholar
  185. 185.
    Kerbel R, Folkmal J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739Google Scholar
  186. 186.
    Kesler M, Levine C, Hershkovitz D et al (2018) 68Ga-PSMA is a novel PET-CT tracer for imaging of hepatocellular carcinoma: a prospective pilot study. J Nucl Med pii: jnumed.118.214833. (Epub ahead of print)
  187. 187.
    Khorjekar GR, Van Nostrand D, Garcia C et al (2014) Do negative 124I pretherapy positron emission tomography scans in patients with elevated serum thyroglobulin levels predict negative 131I posttherapy scans? Thyroid 24:1394–1399PubMedPubMedCentralGoogle Scholar
  188. 188.
    Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59PubMedGoogle Scholar
  189. 189.
    Kinoshita Y, Kuratsukuri K, Landas S et al (2006) Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg 30:628–636Google Scholar
  190. 190.
    Kirchner J, Schaarschmidt BM, Sawicki LM et al (2017) Evaluation of practical interpretation hurdles in 68Ga-PSMA PET/CT in 55 patients: physiological tracer distribution and incidental tracer uptake. Clin Nucl Med 42:e322–e327Google Scholar
  191. 191.
    Kist JW, de Keizer B, van der Vlies M et al (2016) 124I PET/CT to predict the outcome of blind 131I treatment in patients with biochemical recurrence of differentiated thyroid cancer: results of a multicenter diagnostic cohort study (THYROPET). J Nucl Med 57(5):701–707Google Scholar
  192. 192.
    Knowles SM, Am Wu (2012) Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 30(31):3884–3892PubMedPubMedCentralGoogle Scholar
  193. 193.
    Koh WJ, Bergman KS, Rasey JS et al (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using (F- 18)fluoromisonidazole positron emission tomography. Int J Radiat Oncol Biol Phys 33:391–398PubMedGoogle Scholar
  194. 194.
    Koh W-J, Rasey JS, Evans ML (1992) Imaging of hypoxia in human tumors with (F-18)fluoromisonidazole. Int J Radiat Oncol Biol Phys 22:199–212PubMedGoogle Scholar
  195. 195.
    Komar G, Seppaenen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951PubMedGoogle Scholar
  196. 196.
    Kotzerke J, Prang J, Neumaier B et al (2000) Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27:1415–1419PubMedGoogle Scholar
  197. 197.
    Kotzerke J, Volkmer BJ, Neumaier B et al (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med 29:1380–1384Google Scholar
  198. 198.
    Kracht LW, Friese M, Herholz K et al (2003) Methyl-(11C)-lmethionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873PubMedGoogle Scholar
  199. 199.
    Krause BJ, Souvatzoglou M, Tincel M et al (2008) The detection rate of 11-C choline PET/TC depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23PubMedGoogle Scholar
  200. 200.
    Krebs HA (1948) The tricarboxylic acid cycle. Harvey Lect Series 44:165–199Google Scholar
  201. 201.
    Van Laere K, Ceyssens S, Van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51PubMedGoogle Scholar
  202. 202.
    Laforest R, Dehdashti F, Lewis J et al (2005) Dosimetry of 60/61/62/64 Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32:764–770PubMedGoogle Scholar
  203. 203.
    Lambrecht RM, Woodhouse N, Phillips R et al (1988) Investigational study of iodine-124 with a positron camera. Am J Physiol Imaging 3(4):197–200PubMedGoogle Scholar
  204. 204.
    Langen KJ, Hamacher K, Weckesser M et al (2006) O-(2-(18F)fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 33(3):287–294Google Scholar
  205. 205.
    Langsteger W, Heinisch M, Fogelman I (2006) The role of fl uorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fl uoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36:73–92PubMedGoogle Scholar
  206. 206.
    Lapela M, Leskinen-Kallio S, Varpula M et al (1994) Imaging of uterine carcinoma by carbon-11-methionine and PET. J Nucl Med 35(10):1618–1623Google Scholar
  207. 207.
    Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U (2016) Quantitative CD3 PET imaging predicts tumor growth response to Anti-CTLA-4 therapy. J Nucl Med 57(10):1607–1611PubMedPubMedCentralGoogle Scholar
  208. 208.
    Laughlin KM, Evans SM, Jenkins WT et al (1996) Biodistribution of the nitroimidazole EF5 (2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide) in mice bearing subcutaneous EMT6 tumors. J Pharmacol Exp Ther 277:1049–1057PubMedGoogle Scholar
  209. 209.
    Law I, Albert NL, Arbizu J et al (2018) Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and (18F)FDG: version 1.0. Eur J Nucl Med Mol Imaging. (Epub ahead of print)
  210. 210.
    Lawrentschuk N, Lee FT, Jones G, Rigopoulos A, Mountain A, O’Keefe G, Papenfuss AT, Bolton DM, Davis ID, Scott AM (2011) Investigation of hypoxia and carbonic anhydrase IX expression in a renal cell carcinoma xenograft model with oxygen tension measurements and 124I-cG250 PET/CT. Urol Oncol 29:411–420PubMedGoogle Scholar
  211. 211.
    Lawrentschuk N, Poon AMT, Foo SS, Jonhs LG, Putra J, Murone C, Davis ID, Bolton DM, Scott AM (2005) Assessing regional hypoxia in human renal tumours using 18F-fluoromisonidazole positron emission tomography. BJU Int 96:540–546PubMedGoogle Scholar
  212. 212.
    Lazzeri M, Lopci E, Lughezzani G et al (2017) Targeted 11C-choline PET-CT/TRUS software fusion-guided prostate biopsy in men with persistently elevated PSA and negative mpMRI after previous negative biopsy. Eur J Hybrid Imaging 1(1):9PubMedPubMedCentralGoogle Scholar
  213. 213.
    Lee CS, Samii A, Sossi V et al (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503PubMedGoogle Scholar
  214. 214.
    Lee H, Kim S-K, Kim Y-I et al (2014) Early determination of prognosis by interim 30-deoxy-30-18FFluorothymidine PET in patients with non-Hodgkin lymphoma. J Nucl Med 55(2):216e22Google Scholar
  215. 215.
    Leenders KL, Salmon EP, Tyrrell P et al (1990) The nigro-striatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298PubMedGoogle Scholar
  216. 216.
    van Leeuwen PJ, Emmett L, Ho B et al (2017) Prospective evaluation of 68Gallium-PSMA positron emission tomography/computerized tomography for preoperative lymph node staging in prostate cancer. BJU Int 119:209–215PubMedGoogle Scholar
  217. 217.
    Leskinen-Kallio S, Minn H, Joensuu H (1990) PET and (11C)methionine in assessment of response in non-Hodgkin lymphoma. Lancet 336(8724):1188Google Scholar
  218. 218.
    Leskinen-Kallio S, Någren K, Lehikoinen P et al (1991) Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 64(6):1121–1124Google Scholar
  219. 219.
    Leskinen-Kallio S, Någren K, Lehikoinen P et al (1992) Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33(5):691–695Google Scholar
  220. 220.
    Lewis JS, McCarthy DW, McCarthy TJ et al (1999) Evaluation of 64Cu-ATSM in vivo and in vitro in a hypoxic tumor model. J Nucl Med 40:177–183PubMedGoogle Scholar
  221. 221.
    Lewis JS, Sharp TL, Laforest R et al (2001) Tumor uptake of copper-diacetyl-bis(N4- methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42:655–661PubMedGoogle Scholar
  222. 222.
    Lewis JS, Welch MJ (2001) PET imaging of hypoxia. Q J Nucl Med 45(2):183–188Google Scholar
  223. 223.
    Leyton J, Latigo J, Perumal M et al (2005) Early detection of tumor response to chemotherapy by 3’-deoxy-3’-(18F)fluorothymidine positron emission tomography: the effect of cisplatin on the fibrosarcoma tumor model in vivo. Cancer Res 65(10):4202–4210PubMedGoogle Scholar
  224. 224.
    Li S, Peck-Radosavljevic M, Ubl P et al (2017) The value of (11C)-acetate PET and (18F)-FDG PET in hepatocellular carcinoma before and after treatment with transarterial chemoembolization and bevacizumab. Eur J Nucl Med Mol Imaging 44(10):1732–1741Google Scholar
  225. 225.
    Lilja A, Lundqvist H, Olsson Y et al (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radiol 30:121–128PubMedGoogle Scholar
  226. 226.
    Lindstrom P, Sehlin J (1986) Aromatic amino acids and pancreatic islet function: a comparison of L-tryptophan and L-5-hydroxytryptophan. Mol Cell Endocrinol 48:121–126PubMedGoogle Scholar
  227. 227.
    Liu RS (2000) Clinical application of (C-11)acetate in oncology (abstract). Clin Positron Imaging 3:185PubMedGoogle Scholar
  228. 228.
    Liu RS, Chang CP, Chu LS et al (2006) PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imaging 33:420–427PubMedGoogle Scholar
  229. 229.
    Lopci E, Grassi I, Chiti A et al (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Amm J Nucl Med Mol Imaging 4:365–384Google Scholar
  230. 230.
    Lopci E, Grassi I, Rubello D et al (2016) Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT. Clin Nucl Med 41:e87–e92PubMedGoogle Scholar
  231. 231.
    Lopci E, Piccardo A, Nanni C et al (2012) 18F-DOPA PET/CT in neuroblastoma: comparison of conventional imaging with CT/MR. Clin Nucl Med 37(4):e73–e78PubMedGoogle Scholar
  232. 232.
    Lopci E, Chiti A, Castellani MR et al (2011) Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 38(Suppl 1):S28–S40Google Scholar
  233. 233.
    Lopci E, Torzilli G, Poretti D et al (2015) Diagnostic accuracy of 11C-choline PET/CT in comparison with CT and/or MRI in patients with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 42(9):1399–1407Google Scholar
  234. 234.
    Lovenberg W, Weissbach H, Undenfriend S (1962) Aromatic L-amino acid decarboxylase. J Biol Chem 237:89–93PubMedGoogle Scholar
  235. 235.
    Luong A, Hannah VC, Brown MS et al (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275(34):26458–26466PubMedGoogle Scholar
  236. 236.
    Lyrdal D, Boijsen M, Suurküla M et al (2009) Evaluation of sorafenib treatment in metastatic renal cell carcinoma with 2-fluoro-2-deoxyglucose positron emission tomography and computed tomography. Nucl Med Commun. 30(7):519–524Google Scholar
  237. 237.
    Lütje S, Gomez B, Cohnen J et al (2017) Imaging of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-HBED-CC-PSMA PET/CT. Clin Nucl Med 42(1):20–25Google Scholar
  238. 238.
    Martiat P, Ferrant A, Labar D et al (1988) In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med 29:1633–1637PubMedGoogle Scholar
  239. 239.
    Martorana G, Schiavina R, Corti B et al (2006) 11C-choline positron emission tomography/computerized tomography for tumor localization of primary prostate cancer in comparison with 12-core biopsy. J Urol 176:954–960, Discussion 960Google Scholar
  240. 240.
    Maurer RI, Blower PJ, Dilworth JR et al (2002) Studies on the mechanism of hypoxic selectivity in copper bis(thiosemicarbazone) radiopharmaceuticals. J Med Chem 45:1420–1431PubMedGoogle Scholar
  241. 241.
    Maute RL, Gordon SR, Mayer AT et al (2015) Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A 112(47):E6506–E6514PubMedPubMedCentralGoogle Scholar
  242. 242.
    McConathy J, Yu W, Jarkas N et al (2012) Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev 32(4):868–905PubMedGoogle Scholar
  243. 243.
    Mittendorfer B, Sidossis LS, Walser E et al (1998) Regional acetate kinetics and oxidation in human volunteers. Am J Physiol 274(6 Pt 1):E978–E983PubMedGoogle Scholar
  244. 244.
    Mongiardi MP (2012) Angiogenesis and hypoxia in glioblastoma: a focus on cancer stem cells. CNS Neurol Disord Drug Targets 11(7):878–883PubMedGoogle Scholar
  245. 245.
    Morris MJ, Scher HI (2007) 11C-acetate PET imaging in prostate cancer. Eur J Nucl Med Mol Imaging 34(2):181–184PubMedGoogle Scholar
  246. 246.
    Mukherjee S (2010) The emperor of all maladies: a biography of cancer. Scribner, New YorkGoogle Scholar
  247. 247.
    Nanni C, Castellucci P, Farsad M et al (2007) 11C/18F-choline PET or 11C/8F-acetate PET in prostate cancer: may a choice be recommended? Eur J Nucl Med Mol Imaging 34:1704–1705PubMedGoogle Scholar
  248. 248.
    Nanni C, Schiavina R, Brunocilla E et al (2015) 18F-Fluciclovine PET/CT for the detection of prostate cancer relapse. a comparison to 11C-Choline PET/CT. Clin Nucl Med 40:e386–e391PubMedGoogle Scholar
  249. 249.
    Nanni C, Zamagni E, Cavo M et al (2007) 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 5:68Google Scholar
  250. 250.
    Narayanan TK, Said S, Mukherjee J et al (2002) A comparative study on the uptake and incorporation of radiolabeled methionine, choline and fluorodeoxyglucose in human astrocytoma. Mol Imaging Biol 4(2):147–156Google Scholar
  251. 251.
    Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-(methyl-11C) methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedGoogle Scholar
  252. 252.
    Natarajan A, Mayer AT, Reeves RE et al (2017) Development of novel immunoPET tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol 19(6):903–914PubMedPubMedCentralGoogle Scholar
  253. 253.
    Natarajan A, Mayer AT, Xu L et al (2015) Novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26(10):2062–2069PubMedGoogle Scholar
  254. 254.
    Ng P, Rajendran JG, Schwartz DL et al (2003) Can (F-18) fluoromisonidazole PET imaging predict treatment response in head and neck cancer? J Nucl Med 44:128PGoogle Scholar
  255. 255.
    Nicolas GP, Schreiter N, Kaul F et al (2018) Sensitivity comparison of (68)Ga-OPS202 and (68)Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase II imaging study. J Nucl Med 59:915–921Google Scholar
  256. 256.
    Nunez R, Macapinlac H, Yeung HWD et al (2002) Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46–55PubMedGoogle Scholar
  257. 257.
    Nuutinen J, Sonninen P, Lehikoinen P et al (2000) Radiotherapy treatment planning and long-term follow-up with ((11)C)methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48(1):43–52Google Scholar
  258. 258.
    Ogawa T, Kanno I, Shishido F et al (1991) Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202PubMedGoogle Scholar
  259. 259.
    Ogawa T, Shishido F, Kanno I et al (1993) Cerebral gliomas: evaluation with methionine-PET. Radiology 186:45–53PubMedGoogle Scholar
  260. 260.
    Oriuchi N, Tomiyoshi K, Inoue T et al (1996) Independent thallium-201 accumulation and fluorine-18-fluorodeoxyglucose metabolism in glioma. J Nucl Med 37:457–462PubMedGoogle Scholar
  261. 261.
    Otonkoski T, Veijola R, Huopio H et al (2003) Diagnosis of focal persistent hyperinsulinism of infancy with 18F-fluoro-L-DOPA PET. In: Program of the 42nd annual meeting of the European society for paediatric endocrinology (ESPE), Ljubljana, Slovenia, p 2 (Abstract 5.09)Google Scholar
  262. 262.
    Oyama N, Akino H, Kanamaru H et al (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43(2):181–186PubMedGoogle Scholar
  263. 263.
    Oyama N, Akino H, Suzuki Y et al (1999) The increased accumulation of (18F)fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 29:623–629PubMedGoogle Scholar
  264. 264.
    Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):556–558Google Scholar
  265. 265.
    Padhani A (2006) PET imaging of tumour hypoxia. Cancer Imaging 6:S117–S121PubMedPubMedCentralGoogle Scholar
  266. 266.
    Pascali C, Bogni A, Iwata R et al (2000) (11C)methylation on a C18 Sep-Pak cartridge: a convenient way to produce (N-methyl-11C)choline. J Label Comput Radiopharm 43:195–203Google Scholar
  267. 267.
    Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198Google Scholar
  268. 268.
    Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-(18F)fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687PubMedGoogle Scholar
  269. 269.
    Pauleit D, Zimmermann A, Stoffels G et al (2006) 18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer. J Nucl Med 47(2):256–261Google Scholar
  270. 270.
    Pauwels E, Cleeren F, Bormans F et al (2018) Somatostatin receptor PET ligands—the next generation for clinical practice. Am J Nucl Med Mol Imaging. 8(5):311–331PubMedPubMedCentralGoogle Scholar
  271. 271.
    Pearse AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17:303–313PubMedGoogle Scholar
  272. 272.
    Pentlow KS, Graham MC, Lambrecht RM et al (1996) Quantitative imaging of iodine-124 with PET. J Nucl Med 37(9):1557–1562PubMedGoogle Scholar
  273. 273.
    Pentlow KS, Finn RD, Larson SM et al (2000) Quantitative imaging of Yttrium-86 with PET. The occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging 3(3):85–90Google Scholar
  274. 274.
    Perera M, Papa N, Christidis D et al (2016) Sensitivity, specificity, and predictors of positive 68Ga-Prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol 70(6):926–937PubMedGoogle Scholar
  275. 275.
    Phan HT, Jager PL, Paans AM et al (2008) The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 35(5):958–965PubMedPubMedCentralGoogle Scholar
  276. 276.
    Piccardo A, Lopci E, Conte M et al (2012) Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 39:57–71PubMedGoogle Scholar
  277. 277.
    Picchio M, Landoni C, Messa C et al (2002) Positive 11C-choline and negative (18F)FDG with positron emission tomography in recurrence of prostate cancer. AJR Am J Roentgenol 179:482–484PubMedGoogle Scholar
  278. 278.
    Picchio M, Messa C, Landoni C et al (2003) Value of (11C)choline positron emission tomography for re-staging prostate cancer: a comparison with (18F)fluorodeoxyglucose positron emission tomography. J Urol 169:1337–1340PubMedGoogle Scholar
  279. 279.
    Picchio M, Treiber U, Beer AJ et al (2006) Value of 11C-choline PET and contrast-enhanced CT for staging of bladder cancer: correlation with histopathologic findings. J Nucl Med 47(6):938–944Google Scholar
  280. 280.
    Piert M, Machulla HJ, Picchio M et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113Google Scholar
  281. 281.
    Pirotte B, Goldman S, Massager N et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298PubMedGoogle Scholar
  282. 282.
    Podo F (1999) Tumor phospholipid metabolism. NMR Biomed 12:413–414PubMedGoogle Scholar
  283. 283.
    Ponde DE, Oyama N, Dence CS et al (2003) (18F)-Fluoroacetate, an analogue of C-11 acetate for tumor imaging. J Nucl Med 44:296pGoogle Scholar
  284. 284.
    Powles T, Murray I, Brock C et al (2007) Molecular positron emission tomography and PET/CT imaging in urological malignancies. Eur Urol 51:1511–1521Google Scholar
  285. 285.
    Prante O, Blaser D, Maschauer S et al (2007) In vitro characterization of the thyroidal uptake of O-(2-(18F)fluoroethyl)-L-tyrosine. Nucl Med Biol 34:305–314PubMedGoogle Scholar
  286. 286.
    Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37(1):67–77PubMedGoogle Scholar
  287. 287.
    Prior JO, Montemurro M, Orcurto MV et al (2009) Early prediction of response to sunitinib after imatinib failure by 18F-fluorodeoxyglucose positron emission tomography in patients with gastrointestinal stromal tumor. J Clin Oncol 27(3):439–445Google Scholar
  288. 288.
    Pyka T, Okamoto S, Dahlbender M et al (2016) Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging 43:2114–2121Google Scholar
  289. 289.
    Pöpperl G, Goldbrunner R, Gildehaus FJ et al (2005) O-(2-(18F)Fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 32:1018–1025PubMedGoogle Scholar
  290. 290.
    Pöpperl G, Gotz C, Rachinger W et al (2004) Value of O-(2-(18F)fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 31:1464–1470PubMedGoogle Scholar
  291. 291.
    Pöpperl G, Kreth FW, Herms J et al (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403Google Scholar
  292. 292.
    Pöpperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942Google Scholar
  293. 293.
    Rachinger W, Goetz C, Pöpperl G et al (2005) Positron emission tomography with O-(2-(18F)fluoroethyl)-l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas. Neurosurgery 57:505–511PubMedGoogle Scholar
  294. 294.
    Rajendran JG, Mankoff DA, O’Sullivan F et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by (18F)fluoromisonidazole and (18F)fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252PubMedGoogle Scholar
  295. 295.
    Rajendran JG, Wilson DC, Conrad EU et al (2003) (18)F)FMISO and ((18)F)FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704PubMedGoogle Scholar
  296. 296.
    Rapp M, Heinzel A, Galldiks N et al (2013) Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 54:229–235PubMedGoogle Scholar
  297. 297.
    Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304PubMedGoogle Scholar
  298. 298.
    Rasey JS, Hofstrand PD, Chin LK, Tewson TJ (1999) Characterization of (F-18)fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 40:1072–1079PubMedGoogle Scholar
  299. 299.
    Rasey J, Koh W, Evans M et al (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of (18F)fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 24:417–428Google Scholar
  300. 300.
    Ren J, Yuan L, wen G, Yang J (2016) The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta Radiol 57(4):487–493Google Scholar
  301. 301.
    Reske SN, Deisenhofer S (2006) Is 3’-deoxy-3’-18F-fluorothymidine a better marker for tumour response than 18F-fl uorodeoxyglucose? Eur J Nucl Med Mol Imaging 33:S38–S43Google Scholar
  302. 302.
    Reubi JC (2004) Somatostatin and other Peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology 80(Suppl 1):51–56PubMedGoogle Scholar
  303. 303.
    Reubi JC, Kvols L, Krenning E, Lamberts SW (1990) Distribution of somatostatin receptors in normal and tumor tissue. Metabolism 39:78–81PubMedGoogle Scholar
  304. 304.
    Ricci PE, Karis JP, Heiserman JE et al (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR 19:407–413PubMedGoogle Scholar
  305. 305.
    Rigo P, De Landsheere C, Melon P et al (1990) Imaging of myocardial metabolism by positron emission tomography. Cardiovasc Drugs Ther 4(Suppl 4):847–851PubMedGoogle Scholar
  306. 306.
    Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332PubMedGoogle Scholar
  307. 307.
    Rossi S, Toschi L, Castello A et al (2017) Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors. Eur J Nucl Med Mol Imaging 44(13):2310–2325PubMedGoogle Scholar
  308. 308.
    Rubello D, Fanti S, Nanni C et al (2006) 11-C methionine PET/TC in 99m tc-sestamibi negative hyperparathyroidism in patients with renal failure on chronic haemodialysis. Eur J Nucl Med Mol Imaging 33(4):453–459Google Scholar
  309. 309.
    Salminen A, Jambor I, Merisaari H et al (2018) 11C-acetate PET/MRI in bladder cancer staging and treatment response evaluation to neoadjuvant chemotherapy: a prospective multicenter study (ACEBIB trial). Cancer Imaging. 18(1):25Google Scholar
  310. 310.
    Sandblom G, Sorensen J, Lundin N et al (2006) Positron emission tomography with 11C-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 67(5):996–1000PubMedGoogle Scholar
  311. 311.
    Sasaki M, Kuwabara Y, Yoshida T et al (1998) A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 25:1261–1269PubMedGoogle Scholar
  312. 312.
    Sato N, Suzuki M, Kuwata N et al (1999) Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 22:210–214PubMedGoogle Scholar
  313. 313.
    Sawle GV (1993) The detection of pre-clinical Parkinson’s disease: what is the role of positron emission tomography? Mov Disord 8:271–277PubMedGoogle Scholar
  314. 314.
    Scattoni V, Picchio M, Suardi N et al (2007) Detection of lymph-node metastases with integrated (11C)choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic- retroperitoneal lymphadenectomy. Eur Urol 52(2):423–429Google Scholar
  315. 315.
    Schiavina R, Scattoni V, Castellucci P et al (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54(2):392–401Google Scholar
  316. 316.
    Schiepers C, Nuytes J, Bormans G et al (1997) Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med 38:1970–1976PubMedGoogle Scholar
  317. 317.
    Schirrmeinster H, Glatting G, Hetzel J et al (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaFPET in newly diagnosed lung cancer. J Nucl Med 42:1800–1804Google Scholar
  318. 318.
    Schnell O, Krebs B, Carlsen J et al (2009) Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by (18F) Galacto-RGD positron emission tomography. Neuro Oncol 11(6):861–870Google Scholar
  319. 319.
    Schomas DA, Laack NNI, Rao RD et al (2009) Intracranial low-grade gliomas in adults: 30-year experience with long-term follow-up at Mayo clinic. Neuro-Oncology 11(4):437–445PubMedPubMedCentralGoogle Scholar
  320. 320.
    Schonbrunn A, Tashjian H Jr (1978) Characterization of functional receptors for somatostatin in rat pituitary cells in culture. J Biol Chem 253:6473–6483PubMedGoogle Scholar
  321. 321.
    Schuster DM, Nanni C, Fanti S et al (2014) Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 55:1986–1992PubMedPubMedCentralGoogle Scholar
  322. 322.
    Schuster DM, Nanni C, Fanti S (2016) PET tracers beyond FDG in prostate cancer. Semin Nucl Med 45:507–521Google Scholar
  323. 323.
    Schuster D, Nye J, Nieh P et al (2009) Initial experience with the radiotracer anti-1-amino-3-(F-18)fluorocyclobutane-1-carboxylic acid (Anti-(F-18)FACBC) with PET in renal carcinoma. Mol Imaging Biol 11(6):434–438PubMedGoogle Scholar
  324. 324.
    Schuster DM, Savir-Baruch B, Nieh PT et al (2011) Detection of recurrent prostate carcinoma with anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET-CT and 111In-capromab pendetide SPECT/CT. Radiology 259(3):852–861PubMedPubMedCentralGoogle Scholar
  325. 325.
    Schuster D, Votaw J, Nieh P et al (2007) Initial experience with the radiotracer anti-1-amino-3-F-18-fluorocyclobutane-1-carboxylic acid with PET-CT in prostate carcinoma. J Nucl Med 48(1):56–63PubMedGoogle Scholar
  326. 326.
    Schwarzenberg J, Czernin J, Cloughesy TF et al (2014) Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res 20:3550–3559PubMedPubMedCentralGoogle Scholar
  327. 327.
    Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150PubMedGoogle Scholar
  328. 328.
    Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with (18F)FLT and positron emission tomography. Nat Med 4:1334–1336Google Scholar
  329. 329.
    Shreve P, Chiao PC, Humes HD et al (1995) Carbon-11-acetate PET imaging in renal disease. J Nucl Med 36:1595–1601PubMedGoogle Scholar
  330. 330.
    Silver DA, Pellicer I, Fair WR et al (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85Google Scholar
  331. 331.
    Siva S, Callahan J, Pryor D et al (2017) Utility of 68Ga prostate specific membrane antigen—positron emission tomography in diagnosis and response assessment of recurrent renal cell carcinoma. J Med Imaging Radiat Oncol 61(3):372–378Google Scholar
  332. 332.
    Soloviev D, Fini A, Chierichetti F et al (2008) PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging 35(5):942–949PubMedGoogle Scholar
  333. 333.
    Stadlbauer A, Prante O, Nimsky C et al (2008) Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 49(5):721–729Google Scholar
  334. 334.
    Sun A, Sörensen J, Karlsson M et al (2007) 1-(11C)-acetate PET imaging in head and neck cancer—a comparison with 18F-FDG-PET: implications for staging and radiotherapy planning. Eur J Nucl Med Mol Imaging 34(5):651–657PubMedGoogle Scholar
  335. 335.
    Sutinen E, Nurmi M, Roivainen A et al (2003) Kinetics of (11C)choline uptake in prostate cancer: a PET study. Eur J Nucl Med Mol Imaging 31:317–324PubMedGoogle Scholar
  336. 336.
    Swinnen JV, Van Veldhoven PP, Timmermans L et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903PubMedGoogle Scholar
  337. 337.
    Szabo Z, Mena E, Rowe SP et al (2015) Initial evaluation of ((18)F)DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 17:565–574PubMedPubMedCentralGoogle Scholar
  338. 338.
    Sörensen J, Andrén B, Blomquist G et al (2006) The central circulation in congestive heart failure non-invasively evaluated with dynamic positron emission tomography. Clin Physiol Funct Imaging 26(3):171–177PubMedGoogle Scholar
  339. 339.
    Takahashi N, Fujibayashi Y, Yonekura Y et al (2000) Evaluation of 62Cu labeled diacetyl-bis(N4-methylthiosemicarbazone) as a hypoxic tissue tracer in patients with lung cancer. Ann Nucl Med 14:323–328PubMedGoogle Scholar
  340. 340.
    Talbot JN, Fartoux L, Balogova S et al (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51(11):1699–1706Google Scholar
  341. 341.
    Talbot JN, Gutman F, Fartoux L et al (2006) PET/CT in patients with hepatocellular carcinoma using ((18)F))fluorocholine: preliminary comparison with ((18)F)FDG PET/CT. Eur J Nucl Med Mol Imaging 33(11):1285–1289PubMedGoogle Scholar
  342. 342.
    Taneja SS (2004) ProstaScint® Scan: contemporary use in clinical practice. Rev Urol 6(Suppl 10):S19–S28PubMedPubMedCentralGoogle Scholar
  343. 343.
    Tang BN, Moreno-reyes R, Blocket D et al (2008) Accurate preoperative localization of pathological parathyroid glands using 11C- methionine PET/TC. Contrast Media Mol Imaging 3(4):157–163Google Scholar
  344. 344.
    Tannock I, Guttman P (1981) Responses of Chinese hamster ovary cells to anticancer drugs under aerobic and hypoxic conditions. Br J Cancer 42:245–248Google Scholar
  345. 345.
    Tateichi K, Tateishi U, Sato M et al (2013) Application of 62Cu-diacetyl-bis(N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor-1a expression in patients with glioma. AJNR Am J Neuroradiol 34:92–99Google Scholar
  346. 346.
    Tavare R, Escuin-Ordinas H, Mok S et al (2016) An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res 76(1):73–82PubMedGoogle Scholar
  347. 347.
    Terakawa Y, Tsuyuguchi1 N, Iwai Y et al (2008) Diagnostic accuracy of 11C-Methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699Google Scholar
  348. 348.
    Testa C, Schiavina R, Lodi R et al (2007) Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11Ccholine PET/CT. Radiology 244:797–806PubMedGoogle Scholar
  349. 349.
    Tian M, Zhang H, Higuchi T et al (2004) Oncological diagnosis using (11)C-choline-positron emission tomography in comparison with 2-deoxy-2-((18)F) fluoro-D-glucose-positron emission tomography. Mol Imaging Biol 6(3):172–179PubMedGoogle Scholar
  350. 350.
    Tolmachev V, Stone-Elander V (2010) Radiolabelled proteins for positron emission tomography: pros and cons of labelling methods. Biochim Biophys Acta 1800(5):487–510PubMedGoogle Scholar
  351. 351.
    Torii K, Tsuyuguchi N, Kawabe J et al (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 19:677–683PubMedGoogle Scholar
  352. 352.
    Tsuyuguchi N, Sunada I, Iwai Y et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98(5):1056–1064Google Scholar
  353. 353.
    Tsuyuguchi N, Takami T, Sunada I et al (2004): Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery–in malignant glioma. Ann Nucl Med 18(4):291–296Google Scholar
  354. 354.
    Turkbey B, Mana E, Shih J et al (2014) Localised prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology 270:849–856PubMedGoogle Scholar
  355. 355.
    Umbehr MH, Muntener M, Hany T et al (2013) The role of 11C-choline and 18F-fluorocholine positron emission tomograhy (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 64:106–117PubMedGoogle Scholar
  356. 356.
    Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med (37):400–419Google Scholar
  357. 357.
    Vanderhoek M, Juckett MB, Perlman SB et al (2011) Early assessment of treatment response in patients with AML using (18F)FLT PET imaging. Leuk Res 35(3):310e6Google Scholar
  358. 358.
    Vargas HA, Akin O, Schöder H et al (2012). Prospective evaluation of MRI, 11C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radio 81(12):4131–4137Google Scholar
  359. 359.
    Verel I, Visser GW, Boellaard R et al (2003) 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 44(8):1271–1281Google Scholar
  360. 360.
    Vesselle H, Grierson J, Muzi M et al (2002) In vivo validation of 3’deoxy-3’-(18F)fluorothymidine ((18F)FLT) as a proliferation imaging tracer in humans: correlation of (18F)FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 8:3315–3323PubMedGoogle Scholar
  361. 361.
    Volker JF et al (1940) The absorption of fluorides by enamel, dentin, bone, and hydroxyapatite as shown by the radioactive isotope. J Biol Chem 134:543–548Google Scholar
  362. 362.
    De Vries EFJ, Luurtsema G, Brussermann M et al (1999) Fully automated synthesis module for the high yield one-pot preparation of 6-(18F)fluoro-L-DOPA. Appl Radiat Isot 51:389–394Google Scholar
  363. 363.
    van Waarde A, Cobben DC, Suurmeijer AJ et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45(4):695–700PubMedGoogle Scholar
  364. 364.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314PubMedGoogle Scholar
  365. 365.
    Weber W, Bartenstein P, Gross MW et al (1997) Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 38:802–808PubMedGoogle Scholar
  366. 366.
    Weber DC, Zilli T, Buchegger F et al (2008) ((18)F)Fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 3:44Google Scholar
  367. 367.
    Weckesser M, Langen KJ, Rickert CH et al (2005) O-(2-(18F)Fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 32:422–429PubMedGoogle Scholar
  368. 368.
    Wells P, Gunn RN, Alison M et al (2002) Assessment of proliferation in vivo using 2-(11C)thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res 62:5698–5702PubMedGoogle Scholar
  369. 369.
    Wester HJ, Herz M, Weber W et al (1999) Synthesis and radiopharmacology of O-(2-18F-fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 40:205–212Google Scholar
  370. 370.
    Whal L, Nahmias C (1997) Modeling of fluorine-18-6-fluoro-L-Dopa in humans. J Nucl Med 37(3):432–437Google Scholar
  371. 371.
    Wienhard K, Herholz K, Coenen HH et al (1991) Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine (see comments). J Nucl Med 32:1338–1346Google Scholar
  372. 372.
    Wierts R, Brans B, Havekes B et al (2016) Dose-response relationship in differentiated thyroid cancer patients undergoing radioiodine treatment assessed by means of 124I PET/CT. J Nucl Med 57(7):1027–1032Google Scholar
  373. 373.
    Wild D, Fani M, Behe M et al (2011) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417Google Scholar
  374. 374.
    De Witte O, Levivier M, Violon P et al (1996) Prognostic value positron emission tomography with (18F)fluoro-2-deoxy-d-glucose in the low-grade glioma. Neurosurgery 39(3):470–477PubMedGoogle Scholar
  375. 375.
    Wong TZ, Van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumours. Neuroimaging Clin N Am 12:615–626PubMedGoogle Scholar
  376. 376.
    Yamaguchi T, Lee J, Uemura H et al (2005) Prostate cancer: a comparative study of (11)C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 32:742–748PubMedGoogle Scholar
  377. 377.
    Yamamoto Y, Nishiyama Y, Kameyama R et al (2008) Detection of hepatocellular carcinoma using 11C-choline PET: comparison with 18-F-FDG PET. J Nucl Med 49(8):1245–1248Google Scholar
  378. 378.
    Yamamoto Y, Nishiyama Y, Kimura N et al (2008) 11C-Acetate PET in the Evaluation of Brain Glioma: comparison with 11C-Methionine and 18F-FDG-PET. Mol Imaging Biol 10:281–287Google Scholar
  379. 379.
    Yamane T, Sakamoto S, Senda M (2009) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol ImagingGoogle Scholar
  380. 380.
    Yang DJ, Wallace S, Cherif A, Li C, Gretzer MB, Kim EE, Podoloff DA (1995) Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194:795–800PubMedGoogle Scholar
  381. 381.
    Yoshimoto M, Waki A, Yonekura Y et al (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28:117–122PubMedGoogle Scholar
  382. 382.
    Zeisel SH (1981) Dietary choline: biochemistry, physiology and pharmacology. Annu Rev Nutr 1:95–121PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Nuclear Medicine DepartmentHumanitas Clinical and Research Hospital—IRCCSRozzanoItaly
  2. 2.Metropolitan Nuclear MedicineUniversity Hospital S. Orsola-Malpighi, Alma Mater Studiorum, University of BolognaBolognaItaly

Personalised recommendations