Computed Tomography and Magnetic Resonance Imaging

  • Monique R. BernsenEmail author
  • Marcel van Straten
  • Gyula Kotek
  • Esther A. H. Warnert
  • Joost C. Haeck
  • Alessandro Ruggiero
  • Piotr A. Wielopolski
  • Gabriel P. Krestin
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)


Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the cancer cells but should also take aspects of the tumor microenvironment into account. This requires an understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology, this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.


  1. 1.
    Abascal JF, Montesinos P, Marinetto E et al (2014) Comparison of total variation with a motion estimation based compressed sensing approach for self-gated cardiac cine MRI in small animal studies. PLoS ONE 9(10):e110594PubMedPubMedCentralGoogle Scholar
  2. 2.
    Abdel Razek AA, Gaballa G, Ashamalla G et al (2015) Dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted magnetic resonance imaging in differentiating recurrent head and neck cancer from postradiation changes. J Comput Assist Tomogr 39(6):849–854PubMedGoogle Scholar
  3. 3.
    Abdel Razek AA, Gaballa G, Denewer A et al (2010) Diffusion weighted MR imaging of the breast. Acad Radiol 17(3):382–386PubMedGoogle Scholar
  4. 4.
    Adams LC, Bressem K, Boker SM et al (2017) Diagnostic performance of susceptibility-weighted magnetic resonance imaging for the detection of calcifications: a systematic review and meta-analysis. Sci Rep 7(1):15506PubMedPubMedCentralGoogle Scholar
  5. 5.
    Aime S, Delli Castelli D, Lawson D et al (2007) Gd-loaded liposomes as T1, susceptibility, and CEST agents, all in one. J Am Chem Soc 129(9):2430–2431PubMedGoogle Scholar
  6. 6.
    Aime S, Botta M, Gianolio E et al (2000) A p(O(2))-responsive MRI contrast agent based on the redox switch of manganese(ii/iii)—porphyrin complexes. Angewandte Chemie (International ed) 39(4):747–750Google Scholar
  7. 7.
    Aime S, Delli Castelli D, Terreno E (2005) Highly sensitive mri chemical exchange saturation transfer agents using liposomes. Angewandte Chemie (International ed) 44(34):5513–5515Google Scholar
  8. 8.
    Alfke H, Stoppler H, Nocken F et al (2003) In vitro MR imaging of regulated gene expression. Radiology 228(2):488–492PubMedGoogle Scholar
  9. 9.
    Alibek S, Vogel M, Sun W et al (2014) Acoustic noise reduction in MRI using silent scan: an initial experience. Diagn Interv Radiol. 20(4):360–363PubMedPubMedCentralGoogle Scholar
  10. 10.
    Allen MJ, Meade TJ (2003) Synthesis and visualization of a membrane-permeable MRI contrast agent. J Biol Inorg Chem 8(7):746–750PubMedGoogle Scholar
  11. 11.
    Allen-Auerbach M, Weber WA (2009) Measuring response with FDG-pet: methodological aspects. Oncologist 14(4):369–377PubMedGoogle Scholar
  12. 12.
    Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):102–116Google Scholar
  13. 13.
    Ambrose J, Hounsfield G (1973) Computerized transverse axial tomography. Br J Radiol 46(542):148–149PubMedGoogle Scholar
  14. 14.
    Amsalem Y, Mardor Y, Feinberg MS et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116(11 Suppl):I38–145PubMedGoogle Scholar
  15. 15.
    Anderson NG, Butler AP, Scott NJ et al (2010) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in mice. Eur Radiol 20(9):2126–2134PubMedGoogle Scholar
  16. 16.
    Anderson SA, Glod J, Arbab AS et al (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105(1):420–425PubMedGoogle Scholar
  17. 17.
    Arena F, Singh JB, Gianolio E et al (2011) Beta-gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd(iii) containing probe forming a high relaxivity, melanin-like structure upon beta-gal enzymatic activation. Bioconjug Chem 22(12):2625–2635Google Scholar
  18. 18.
    Artemov D, Solaiyappan M, Bhujwalla ZM (2001) Magnetic resonance pharmacoangiography to detect and predict chemotherapy delivery to solid tumors. Can Res 61(7):3039–3044Google Scholar
  19. 19.
    Artzi M, Bokstein F, Blumenthal DT et al (2014) Differentiation between vasogenic-edema versus tumor-infiltrative area in patients with glioblastoma during bevacizumab therapy: a longitudinal MRI study. Eur J Radiol 83(7):1250–1256Google Scholar
  20. 20.
    Auricchio A, Zhou R, Wilson JM et al (2001) In vivo detection of gene expression in liver by 31P nuclear magnetic resonance spectroscopy employing creatine kinase as a marker gene. Proc Natl Acad Sci USA 98(9):5205–5210PubMedGoogle Scholar
  21. 21.
    Baraniuk RG (2007) Compressive sensing [lecture notes]. IEEE Signal Process Mag 24(4):118–121Google Scholar
  22. 22.
    Barrett T, Kobayashi H, Brechbiel M et al (2006) Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 60(3):353–366PubMedGoogle Scholar
  23. 23.
    Baudrexel S, Nurnberger L, Rub U et al (2010) Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s disease. NeuroImage 51(2):512–520PubMedGoogle Scholar
  24. 24.
    Bauman G, Johnson KM, Bell LC et al (2015) Three-dimensional pulmonary perfusion MRI with radial ultrashort echo time and spatial-temporal constrained reconstruction. Magn Reson Med 73(2):555–564PubMedGoogle Scholar
  25. 25.
    Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in x-ray CT. Phys Med 28(2):94–108PubMedGoogle Scholar
  26. 26.
    Bellin MF (2006) MR contrast agents, the old and the new. Eur J Radiol 60(3):314–323PubMedGoogle Scholar
  27. 27.
    Beloueche-Babari M, Chung YL, Al-Saffar NM et al (2010) Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer 102(1):1–7PubMedGoogle Scholar
  28. 28.
    Beloueche-Babari M, Chung YL, Al-Saffar NM et al (2010) Metabolic assessment of the action of targeted cancer therapeutics using magnetic resonance spectroscopy. Br J Cancer 102(1):1–7Google Scholar
  29. 29.
    Bernsen MR, Guenoun J, van Tiel ST et al (2015) Nanoparticles and clinically applicable cell tracking. Br J Radiol 88(1054):20150375PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bernsen MR, Kooiman K, Segbers M et al (2015) Biomarkers in preclinical cancer imaging. Eur J Nucl Med Mol Imaging 42(4):579–596PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bernsen MR, Moelker AD, Wielopolski PA et al (2010) Labelling of mammalian cells for visualisation by MRI. Eur Radiol 20(2):255–274PubMedGoogle Scholar
  32. 32.
    Bertini I, Bianchini F, Calorini L et al (2004) Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn Reson Med 52(3):669–672PubMedGoogle Scholar
  33. 33.
    Beyhan M, Sade R, Koc E et al (2018) The evaluation of prostate lesions with IVIM DWI and MR perfusion parameters at 3T MRI. Radiol MedGoogle Scholar
  34. 34.
    Bianchi A, Lux F, Tillement O et al (2013) Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-dota-based nanoparticles. Magn Reson Med 70(5):1419–1426PubMedGoogle Scholar
  35. 35.
    Bison SM, Haeck JC, Bol K et al (2015) Optimization of combined temozolomide and peptide receptor radionuclide therapy (PRRT) in mice after multimodality molecular imaging studies. EJNMMI Res 5(1):62PubMedPubMedCentralGoogle Scholar
  36. 36.
    Blaimer M, Breuer F, Mueller M et al (2004) Smash, sense, pils, grappa: how to choose the optimal method. Top Magn Reson Imaging 15(4):223–236PubMedGoogle Scholar
  37. 37.
    Blankenberg FG, Levashova Z, Sarkar SK et al (2010) Noninvasive assessment of tumor VEGF receptors in response to treatment with pazopanib: a molecular imaging study. Transl Oncol 3(1):56–64PubMedPubMedCentralGoogle Scholar
  38. 38.
    Bloch FHWPEM (1946) Nuclear induction. Phys Rev 69:460–474Google Scholar
  39. 39.
    Boada FE, Tanase C, Davis D et al (2004) Non-invasive assessment of tumor proliferation using triple quantum filtered 23/na mri: technical challenges and solutions. Conf Proc IEEE Eng Med Biol Soc. 7:5238–5241Google Scholar
  40. 40.
    Boehm-Sturm P, Haeckel A, Hauptmann R et al (2018) Low-molecular-weight iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced mr imaging. Radiology 286(2):537–546PubMedGoogle Scholar
  41. 41.
    Bogdanov A Jr, Matuszewski L, Bremer C et al (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for mr imaging of molecular targets. Mol Imaging 1(1):16–23PubMedGoogle Scholar
  42. 42.
    Bohndiek SE, Brindle KM (2010) Imaging and ‘omic’ methods for the molecular diagnosis of cancer. Expert Rev Mol Diagn 10(4):417–434PubMedGoogle Scholar
  43. 43.
    Bol K, Haeck JC, Groen HC et al (2013) Can DCE-MRI explain the heterogeneity in radiopeptide uptake imaged by SPECT in a pancreatic neuroendocrine tumor model? PLoS ONE 8(10):e77076PubMedPubMedCentralGoogle Scholar
  44. 44.
    Bolan PJ, Nelson MT, Yee D et al (2005) Imaging in breast cancer: magnetic resonance spectroscopy. Breast Cancer Res 7(4):149–152PubMedPubMedCentralGoogle Scholar
  45. 45.
    Boll DT, Merkle EM, Paulson EK et al (2008) Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector ct in anthropomorphically moving heart phantom. Radiology 249(1):119–126PubMedGoogle Scholar
  46. 46.
    Bolskar RD, Benedetto AF, Husebo LO et al (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 125(18):5471–5478PubMedGoogle Scholar
  47. 47.
    Boutry S, Burtea C, Laurent S et al (2005) Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53(4):800–807PubMedGoogle Scholar
  48. 48.
    Boxerman JL, Ellingson BM, Jeyapalan S et al (2017) Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol 40(3):228–234PubMedGoogle Scholar
  49. 49.
    Brix G, Semmler W, Port R et al (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced mr imaging. J Comput Assist Tomogr 15(4):621–628PubMedGoogle Scholar
  50. 50.
    Broeke NC, Peterson J, Lee J et al (2018) Characterization of clinical human prostate cancer lesions using 3.0-T sodium MRI registered to gleason-graded whole-mount histopathology. J Magn Reson ImagingGoogle Scholar
  51. 51.
    Bulte JWM (2018) Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv Drug Deliv RevGoogle Scholar
  52. 52.
    Calmon R, Puget S, Varlet P et al (2018) Cerebral blood flow changes after radiation therapy identifies pseudoprogression in diffuse intrinsic pontine gliomas. Neuro Oncol 20(7):994–1002PubMedGoogle Scholar
  53. 53.
    Candes EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509Google Scholar
  54. 54.
    Cao Y (2011) The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol 21(2):147–156PubMedPubMedCentralGoogle Scholar
  55. 55.
    Caravan P (2009) Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Acc Chem Res 42(7):851–862PubMedGoogle Scholar
  56. 56.
    Caride VJ, Sostman HD, Winchell RJ et al (1984) Relaxation enhancement using liposomes carrying paramagnetic species. Magn Reson Imaging 2(2):107–112PubMedGoogle Scholar
  57. 57.
    Chang PD, Malone HR, Bowden SG et al (2017) A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol 38(5):890–898PubMedGoogle Scholar
  58. 58.
    Charnley N, Donaldson S, Price P (2009) Imaging angiogenesis. Methods Mol Biol (Clifton, NJ) 467:25–51Google Scholar
  59. 59.
    Chen LQ, Howison CM, Jeffery JJ et al (2014) Evaluations of extracellular ph within in vivo tumors using acidocest mri. Magn Reson Med 72(5):1408–1417PubMedGoogle Scholar
  60. 60.
    Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41(12):1630–1640PubMedGoogle Scholar
  61. 61.
    Cohen B, Dafni H, Meir G et al (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7(2):109–117PubMedPubMedCentralGoogle Scholar
  62. 62.
    Cohen B, Ziv K, Plaks V et al (2007) MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 13(4):498–503PubMedGoogle Scholar
  63. 63.
    Coupe P, Yger P, Prima S et al (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27(4):425–441PubMedPubMedCentralGoogle Scholar
  64. 64.
    Cyran CC, Fu Y, Raatschen HJ et al (2008) New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging 27(3):581–589PubMedGoogle Scholar
  65. 65.
    Daldrup H, Shames DM, Wendland M et al (1998) Correlation of dynamic contrast-enhanced mr imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR Am J Roentgenol 171(4):941–949PubMedGoogle Scholar
  66. 66.
    DeClerck K, Elble RC (2010) The role of hypoxia and acidosis in promoting metastasis and resistance to chemotherapy. Front Biosci 15:213–225Google Scholar
  67. 67.
    DeLeo MJ 3rd, Gounis MJ, Hong B et al (2009) Carotid artery brain aneurysm model: in vivo molecular enzyme-specific mr imaging of active inflammation in a pilot study. Radiology 252(3):696–703PubMedPubMedCentralGoogle Scholar
  68. 68.
    Deans AE, Wadghiri YZ, Bernas LM et al (2006) Cellular MRI contrast via coexpression of transferrin receptor and ferritin. Magn Reson Med 56(1):51–59PubMedPubMedCentralGoogle Scholar
  69. 69.
    Deng CX, Exner A (2010) Image-guided therapeutics. Mol Pharm 7(1):1–2PubMedGoogle Scholar
  70. 70.
    Deoni SC, Peters TM, Rutt BK (2005) High-resolution T1 and T2 mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn Reson Med 53(1):237–241PubMedGoogle Scholar
  71. 71.
    Deoni SC, Williams SC, Jezzard P et al (2008) Standardized structural magnetic resonance imaging in multicentre studies using quantitative T1 and T2 imaging at 1.5 T. NeuroImage 40(2):662–671Google Scholar
  72. 72.
    Deshmane A, Gulani V, Griswold MA et al (2012) Parallel MR imaging. J Magn Reson Imaging 36(1):55–72PubMedPubMedCentralGoogle Scholar
  73. 73.
    Desser TS, Rubin DL, Muller HH et al (1994) Dynamics of tumor imaging with Gd-DTPA-polyethylene glycol polymers: dependence on molecular weight. J Magn Reson Imaging 4(3):467–472PubMedGoogle Scholar
  74. 74.
    Devoisselle JM, Vion-Dury J, Galons JP et al (1988) Entrapment of gadolinium-DTPA in liposomes. Characterization of vesicles by P-31 NMR spectroscopy. Invest Radiol 23(10):719–724Google Scholar
  75. 75.
    Dhermain F, Saliou G, Parker F et al (2010) Microvascular leakage and contrast enhancement as prognostic factors for recurrence in unfavorable low-grade gliomas. J Neurooncol 97(1):81–88PubMedGoogle Scholar
  76. 76.
    Dighe M, Chaturvedi A, Lee JH et al (2008) Staging of gynecologic malignancies. Ultrasound Q 24(3):181–194PubMedGoogle Scholar
  77. 77.
    Dimitrakopoulou-Strauss A, Pan L, Strauss LG (2012) Quantitative approaches of dynamic FDG-pet and pet/CT studies (DPET/CT) for the evaluation of oncological patients. Cancer Imaging 12:283–289PubMedPubMedCentralGoogle Scholar
  78. 78.
    Dinis Fernandes C, van Houdt PJ, Heijmink S et al (2018) Quantitative 3T multiparametric MRI of benign and malignant prostatic tissue in patients with and without local recurrent prostate cancer after external-beam radiation therapy. J Magn Reson ImagingGoogle Scholar
  79. 79.
    Dong Y, Eskandari R, Ray C et al (2019) Hyperpolarized MRI visualizes warburg effects and predicts treatment response to MTOR inhibitors in patient-derived CCRCC xenograft models. Can Res 79(1):242–250Google Scholar
  80. 80.
    Donoho DL (2006) Compressed sensing. IEEE Inf Theory Soc 52(4):1289–1306Google Scholar
  81. 81.
    Duimstra JA, Femia FJ, Meade TJ (2005) A gadolinium chelate for detection of beta-glucuronidase: a self-immolative approach. J Am Chem Soc 127(37):12847–12855PubMedGoogle Scholar
  82. 82.
    Dyke JP, Panicek DM, Healey JH et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced mr imaging. Radiology 228(1):271–278PubMedGoogle Scholar
  83. 83.
    Edmund JM, Nyholm T (2017) A review of substitute ct generation for MRI-only radiation therapy. Radiat Oncol 12(1):28PubMedPubMedCentralGoogle Scholar
  84. 84.
    Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247Google Scholar
  85. 85.
    Enochs WS, Petherick P, Bogdanova A et al (1997) Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204(2):417–423PubMedGoogle Scholar
  86. 86.
    Erlemann R, Sciuk J, Bosse A et al (1990) Response of osteosarcoma and Ewing sarcoma to preoperative chemotherapy: assessment with dynamic and static MR imaging and skeletal scintigraphy. Radiology 175(3):791–796PubMedGoogle Scholar
  87. 87.
    Esmaeili E, Khalili M, Sohi AN et al (2018) Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis. J Cell PhysiolGoogle Scholar
  88. 88.
    Farrell E, Wielopolski P, Pavljasevic P et al (2009) Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour. Osteoarthritis Cartilage 17(7):961–967PubMedGoogle Scholar
  89. 89.
    Fathi Kazerooni A, Nabil M, Zeinali Zadeh M et al (2018) Characterization of active and infiltrative tumorous subregions from normal tissue in brain gliomas using multiparametric MRI. J Magn Reson Imaging 48(4):938–950PubMedGoogle Scholar
  90. 90.
    Ferrauto G, Di Gregorio E, Ruzza M et al (2017) Enzyme-responsive lipocest agents: assessment of MMP-2 activity by measuring the intra-liposomal water (1) h NMR shift. Angewandte Chemie (International ed) 56(40):12170–12173Google Scholar
  91. 91.
    Fischer MA, Nanz D, Hany T et al (2010) Diagnostic accuracy of whole-body MRI/DWI image fusion for detection of malignant tumours: a comparison with PET/CT. Eur RadiolGoogle Scholar
  92. 92.
    Fleysher L, Oesingmann N, Inglese M (2010) B(0) inhomogeneity-insensitive triple-quantum-filtered sodium imaging using a 12-step phase-cycling scheme. NMR BiomedGoogle Scholar
  93. 93.
    Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source ct (DSCT) system. Eur Radiol 16(2):256–268PubMedGoogle Scholar
  94. 94.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31Google Scholar
  95. 95.
    Forstner R (2007) Radiological staging of ovarian cancer: imaging findings and contribution of CT and MRI. Eur Radiol 17(12):3223–3235PubMedGoogle Scholar
  96. 96.
    Fossheim SL, Fahlvik AK, Klaveness J et al (1999) Paramagnetic liposomes as MRI contrast agents: influence of liposomal physicochemical properties on the in vitro relaxivity. Magn Reson Imaging 17(1):83–89PubMedGoogle Scholar
  97. 97.
    Frich L, Bjornerud A, Fossheim S et al (2004) Experimental application of thermosensitive paramagnetic liposomes for monitoring magnetic resonance imaging guided thermal ablation. Magn Reson Med 52(6):1302–1309PubMedGoogle Scholar
  98. 98.
    Fu Y, Raatschen HJ, Nitecki DE et al (2007) Cascade polymeric MRI contrast media derived from poly(ethylene glycol) cores: Initial syntheses and characterizations. Biomacromol 8(5):1519–1529Google Scholar
  99. 99.
    Fuchs VR, Sox HC Jr (2001) Physicians’ views of the relative importance of thirty medical innovations. Health Aff (Millwood) 20(5):30–42Google Scholar
  100. 100.
    Fulop A, Szijarto A, Harsanyi L et al (2014) Demonstration of metabolic and cellular effects of portal vein ligation using multi-modal PET/MRI measurements in healthy rat liver. PLoS ONE 9(3):e90760PubMedPubMedCentralGoogle Scholar
  101. 101.
    Gabellieri C, Reynolds S, Lavie A et al (2008) Therapeutic target metabolism observed using hyperpolarized 15n choline. J Am Chem Soc 130(14):4598–4599PubMedGoogle Scholar
  102. 102.
    Galban S, Brisset JC, Rehemtulla A et al (2010) Diffusion-weighted MRI for assessment of early cancer treatment response. Curr Pharm Biotechnol 11(6):701–708PubMedPubMedCentralGoogle Scholar
  103. 103.
    Gao GH, Im GH, Kim MS et al (2010) Magnetite-nanoparticle-encapsulated ph-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. Small 6(11):1201–1204PubMedGoogle Scholar
  104. 104.
    Garcia-Martin ML, Martinez GV, Raghunand N et al (2006) High resolution ph(e) imaging of rat glioma using ph-dependent relaxivity. Magn Reson Med 55(2):309–315Google Scholar
  105. 105.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899Google Scholar
  106. 106.
    Gatidis S, Scharpf M, Martirosian P et al (2015) Combined unsupervised-supervised classification of multiparametric PET/MRI data: application to prostate cancer. NMR Biomed 28(7):914–922PubMedGoogle Scholar
  107. 107.
    Geethanath S, Reddy R, Konar AS et al (2013) Compressed sensing mri: a review. Crit Rev Biomed Eng 41(3):183–204PubMedGoogle Scholar
  108. 108.
    Genove G, DeMarco U, Xu H et al (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11(4):450–454Google Scholar
  109. 109.
    Gerber BL, Bluemke DA, Chin BB et al (2002) Single-vessel coronary artery stenosis: Myocardial perfusion imaging with gadomer-17 first-pass MR imaging in a swine model of comparison with gadopentetate dimeglumine. Radiology 225(1):104–112PubMedGoogle Scholar
  110. 110.
    Gilad AA, McMahon MT, Walczak P et al (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25(2):217–219Google Scholar
  111. 111.
    Gilad AA, Winnard PT Jr, van Zijl PC et al (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20(3):275–290PubMedGoogle Scholar
  112. 112.
    Gillies RJ, Morse DL (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326PubMedGoogle Scholar
  113. 113.
    Gjesteby L, Cong W, Yang Q et al (2018) Simultaneous emission-transmission tomography in an MRI hardware framework. IEEE Trans Radiat Plasma Med Sci. 2(4):326–336PubMedPubMedCentralGoogle Scholar
  114. 114.
    Glogard C, Stensrud G, Hovland R et al (2002) Liposomes as carriers of amphiphilic gadolinium chelates: the effect of membrane composition on incorporation efficacy and in vitro relaxivity. Int J Pharm 233(1–2):131–140PubMedGoogle Scholar
  115. 115.
    Goetz C, Breton E, Choquet P et al (2008) Spect low-field MRI system for small-animal imaging. J Nucl Med 49(1):88–93PubMedGoogle Scholar
  116. 116.
    Gossmann A, Okuhata Y, Shames DM et al (1999) Prostate cancer tumor grade differentiation with dynamic contrast-enhanced mr imaging in the rat: comparison of macromolecular and small-molecular contrast media–preliminary experience. Radiology 213(1):265–272PubMedGoogle Scholar
  117. 117.
    Grandin C, Van Beers BE, Demeure R et al (1995) Comparison of gadolinium-DTPA and polylysine-gadolinium-DTPA–enhanced magnetic resonance imaging of hepatocarcinoma in the rat. Invest Radiol 30(10):572–581PubMedGoogle Scholar
  118. 118.
    Grovik E, Redalen KR, Storas TH et al (2017) Dynamic multi-echo DCE- and DSC-MRI in rectal cancer: low primary tumor k(trans) and deltar2* peak are significantly associated with lymph node metastasis. J Magn Reson Imaging 46(1):194–206PubMedGoogle Scholar
  119. 119.
    Gulaka PK, Yu JX, Liu L et al (2013) Novel s-Gal((r)) analogs as (1)h MRI reporters for in vivo detection of beta-galactosidase. Magn Reson Imaging 31(6):1006–1011PubMedPubMedCentralGoogle Scholar
  120. 120.
    Guo J, Wong EC (2015) Increased snr efficiency in velocity selective arterial spin labeling using multiple velocity selective saturation modules (mm-VSASL). Magn Reson Med 74(3):694–705PubMedGoogle Scholar
  121. 121.
    Gupta RT, Ho LM, Marin D et al (2010) Dual-energy ct for characterization of adrenal nodules: initial experience. AJR Am J Roentgenol 194(6):1479–1483PubMedGoogle Scholar
  122. 122.
    Haberkorn U, Altmann A, Mier W et al (2007) Molecular imaging of tumor metabolism and apoptosis. Ernst Schering Foundation Symposium Proceedings 4:125–152Google Scholar
  123. 123.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70Google Scholar
  124. 124.
    Haris M, Singh A, Mohammed I et al (2014) In vivo magnetic resonance imaging of tumor protease activity. Sci Rep 4:6081PubMedPubMedCentralGoogle Scholar
  125. 125.
    Haris M, Yadav SK, Rizwan A et al (2015) Molecular magnetic resonance imaging in cancer. J Transl Med 13:313PubMedPubMedCentralGoogle Scholar
  126. 126.
    Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499Google Scholar
  127. 127.
    Hartman KB, Laus S, Bolskar RD et al (2008) Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano Lett 8(2):415–419PubMedGoogle Scholar
  128. 128.
    Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16(12):2637–2643PubMedGoogle Scholar
  129. 129.
    Hayes CE, Hattes N, Roemer PB (1991) Volume imaging with MR phased arrays. Magn Reson Med 18(2):309–319PubMedGoogle Scholar
  130. 130.
    Heidemann RM, Ozsarlak O, Parizel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13(10):2323–2337PubMedGoogle Scholar
  131. 131.
    Hejduk B, Bobek-Billewicz B, Rutkowski T et al (2017) Application of intravoxel incoherent motion (IVIM) model for differentiation between metastatic and non-metastatic head and neck lymph nodes. Pol J Radiol 82:506–510PubMedPubMedCentralGoogle Scholar
  132. 132.
    Helfer BM, Balducci A, Nelson AD et al (2010) Functional assessment of human dendritic cells labeled for in vivo (19)f magnetic resonance imaging cell tracking. Cytotherapy 12(2):238–250PubMedPubMedCentralGoogle Scholar
  133. 133.
    Himmelreich U, Aime S, Hieronymus T et al (2006) A responsive mri contrast agent to monitor functional cell status. NeuroImage 32(3):1142–1149PubMedGoogle Scholar
  134. 134.
    Högemann-Savellano D, Bos E, Blondet C et al (2003) The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 5(6):495–506Google Scholar
  135. 135.
    Hong H, Yang Y, Zhang Y et al (2010) Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem 10(12):1237–1248PubMedPubMedCentralGoogle Scholar
  136. 136.
    Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radio 46(552):1016–1022Google Scholar
  137. 137.
    Hsiao JK, Chu HH, Wang YH et al (2008) Macrophage physiological function after superparamagnetic iron oxide labeling. NMR Biomed 21(8):820–829PubMedGoogle Scholar
  138. 138.
    Hu J, Hu K, Cheng Y (2016) Tailoring the dendrimer core for efficient gene delivery. Acta Biomater 35:1–11PubMedGoogle Scholar
  139. 139.
    Hutton BF, Occhipinti M, Kuehne A et al (2018) Development of clinical simultaneous SPECT/MRI. Br J Radiol 91(1081):20160690PubMedGoogle Scholar
  140. 140.
    Hwang do W, Ko HY, Lee JH et al (2010) A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med 51(1):98–105Google Scholar
  141. 141.
    Iyer AK, Khaled G, Fang J et al (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818Google Scholar
  142. 142.
    Jafari A, Salouti M, Shayesteh SF et al (2015) Synthesis and characterization of bombesin-superparamagnetic iron oxide nanoparticles as a targeted contrast agent for imaging of breast cancer using MRI. Nanotechnology 26(7):075101PubMedGoogle Scholar
  143. 143.
    Jardim DL, Schwaederle M, Hong DS et al (2016) An appraisal of drug development timelines in the era of precision oncology. Oncotarget 7(33):53037–53046PubMedPubMedCentralGoogle Scholar
  144. 144.
    Jiang T, Zhang C, Zheng X (2009) Noninvasively characterizing the different alphavbeta3 expression patterns in lung cancers with RGD-USPIO using a clinical 3.0T MR scanner. Int J Nanomedicine 4:241–249Google Scholar
  145. 145.
    Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17(6):1510–1517PubMedGoogle Scholar
  146. 146.
    Johnson SP, Ramasawmy R, Campbell-Washburn AE et al (2016) Acute changes in liver tumour perfusion measured non-invasively with arterial spin labelling. Br J Cancer 114(8):897–904PubMedPubMedCentralGoogle Scholar
  147. 147.
    Johnstone E, Wyatt JJ, Henry AM et al (2018) Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys 100(1):199–217Google Scholar
  148. 148.
    Juers DH, Jacobson RH, Wigley D et al (2000) High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation. Protein Sci 9(9):1685–1699PubMedPubMedCentralGoogle Scholar
  149. 149.
    Kabalka GW, Davis MA, Moss TH et al (1991) Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn Reson Med 19(2):406–415PubMedGoogle Scholar
  150. 150.
    Kachelriess M, Ulzheimer S, Kalender WA (2000) Ecg-correlated image reconstruction from subsecond multi-slice spiral CT scans of the heart. Med Phys 27(8):1881–1902PubMedGoogle Scholar
  151. 151.
    Kaiser WA, Zeitler E (1989) Mr imaging of the breast: Fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170(3 Pt 1):681–686PubMedGoogle Scholar
  152. 152.
    Kak ACaS M (1988) Principles of computerized tomographic imaging. IEEE PressGoogle Scholar
  153. 153.
    Kalender WA, Perman WH, Vetter JR et al (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13(3):334–339PubMedGoogle Scholar
  154. 154.
    Kalender WA (2005) Computed tomography. Fundamentals, system technology, image quality, applications, 2nd edn. Publicis Corporate Publishing, ErlangenGoogle Scholar
  155. 155.
    Kang JH, Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49(Suppl 2):S164–S179Google Scholar
  156. 156.
    Karcaaltincaba M, Karaosmanoglu D, Akata D et al (2009) Dual energy virtual ct colonoscopy with dual source computed tomography: initial experience. Rofo. 181(9):859–862PubMedGoogle Scholar
  157. 157.
    Kellner E, Breyer T, Gall P et al (2015) Mr evaluation of vessel size imaging of human gliomas: validation by histopathology. J Magn Reson Imaging 42(4):1117–1125PubMedGoogle Scholar
  158. 158.
    Khantasup K, Saiviroonporn P, Jarussophon S et al (2018) Anti-epcam scfv gadolinium chelate: a novel targeted MRI contrast agent for imaging of colorectal cancer. MAGMA 31(5):633–644PubMedGoogle Scholar
  159. 159.
    Kharuzhyk SA, Petrovskaya NA, Vosmitel MA (2010) Diffusion-weighted magnetic resonance imaging in non-invasive monitoring of antiangiogenic therapy in experimental tumor model. Exp Oncol 32(2):104–106PubMedGoogle Scholar
  160. 160.
    Khashbat MdD, Abe MdT, Ganbold MdM et al (2016) Correlation of 3D arterial spin labeling and multi-parametric dynamic susceptibility contrast perfusion mri in brain tumors. J Med Invest 63(3–4):175–181Google Scholar
  161. 161.
    Kim J, Chhour P, Hsu J et al (2017) Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem 28(6):1581–1597PubMedPubMedCentralGoogle Scholar
  162. 162.
    Kiselev VG, Strecker R, Ziyeh S et al (2005) Vessel size imaging in humans. Magn Reson Med 53(3):553–563PubMedGoogle Scholar
  163. 163.
    Kobayashi H, Nishikawa M, Sakamoto C et al (2009) Dual temperature-and pH-responsive fluorescence molecular probe for cellular imaging utilizing a pnipaam-fluorescein copolymer. Anal Sci 25(8):1043–1047PubMedGoogle Scholar
  164. 164.
    Kobayashi H, Reijnders K, English S et al (2004) Application of a macromolecular contrast agent for detection of alterations of tumor vessel permeability induced by radiation. Clin Cancer Res 10(22):7712–7720PubMedGoogle Scholar
  165. 165.
    Kodibagkar VD, Cui W, Merritt ME et al (2006) Novel 1 h NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn Reson Med 55(4):743–748PubMedGoogle Scholar
  166. 166.
    Koenig SH, Brown RD 3rd, Kurland R et al (1988) Relaxivity and binding of Mn2+ ions in solutions of phosphatidylserine vesicles. Magn Reson Med 7(2):133–142PubMedGoogle Scholar
  167. 167.
    Komohara Y, Takeya M (2017) Cafs and tams: maestros of the tumour microenvironment. J Pathol 241(3):313–315PubMedGoogle Scholar
  168. 168.
    Koretsky AP, Brosnan MJ, Chen LH et al (1990) Nmr detection of creatine kinase expressed in liver of transgenic mice: determination of free adp levels. Proc Natl Acad Sci USA 87(8):3112–3116PubMedGoogle Scholar
  169. 169.
    Koretsky AP, Lin Y-J, Schorle H, Jaenisch R (1996) Genetic control of MRI contrast by expression of the transferrin receptor. Proc Int Soc Magn Reson Med 4:69Google Scholar
  170. 170.
    Kramer M, Motaal AG, Herrmann KH et al (2017) Cardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging. J Cardiovasc Magn Reson 19(1):39Google Scholar
  171. 171.
    Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):S129–S148Google Scholar
  172. 172.
    Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH et al (2019) Hyperpolarized (13)C MRI: path to clinical translation in oncology. Neoplasia 21(1):1–16Google Scholar
  173. 173.
    Kurhanewicz J, Vigneron D, Carroll P et al (2008) Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol 18(1):71–77PubMedPubMedCentralGoogle Scholar
  174. 174.
    Kurhanewicz J, Vigneron DB, Hricak H et al (1996) Prostate cancer: metabolic response to cryosurgery as detected with 3D h-1 MR spectroscopic imaging. Radiology 200(2):489–496PubMedGoogle Scholar
  175. 175.
    Kurhanewicz J, Vigneron DB, Hricak H et al (1996) Three-dimensional h-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 198(3):795–805Google Scholar
  176. 176.
    Kurhanewicz J, Vigneron DB, Males RG et al (2000) The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am 38(1):115–138, viii–ixGoogle Scholar
  177. 177.
    Kweon S, Lee HJ, Hyung WJ et al (2010) Liposomes coloaded with iopamidol/lipiodol as a res-targeted contrast agent for computed tomography imaging. Pharm Res 27(7):1408–1415PubMedGoogle Scholar
  178. 178.
    Lamb J, Holland JP (2018) Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med 59(3):382–389PubMedGoogle Scholar
  179. 179.
    Langereis S, Keupp J, van Velthoven JL et al (2009) A temperature-sensitive liposomal 1 h CEST and 19F contrast agent for mr image-guided drug delivery. J Am Chem Soc 131(4):1380–1381PubMedGoogle Scholar
  180. 180.
    Larkman DJ, Nunes RG (2007) Parallel magnetic resonance imaging. Phys Med Biol 52(7):R15–R55PubMedGoogle Scholar
  181. 181.
    Larson PE, Han M, Krug R et al (2016) Ultrashort echo time and zero echo time MRI at 7T. MAGMA 29(3):359–370PubMedGoogle Scholar
  182. 182.
    Laslett LJ, Sabin A (1989) Wearing of caps and masks not necessary during cardiac catheterization. Cathet Cardiovasc Diagn 17(3):158–160PubMedGoogle Scholar
  183. 183.
    Lauffer RB, Parmelee DJ, Ouellet HS et al (1996) Ms-325: a small-molecule vascular imaging agent for magnetic resonance imaging. Acad Radiol 3(Suppl 2):S356–S358PubMedGoogle Scholar
  184. 184.
    Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion mr imaging. Radiology 168(2):497–505Google Scholar
  185. 185.
    Lee KC, Hamstra DA, Bhojani MS et al (2007) Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/APO2l for cancer therapy. Clin Cancer Res 13(6):1839–1846PubMedGoogle Scholar
  186. 186.
    Lee CM, Jeong HJ, Kim EM et al (2009) Superparamagnetic iron oxide nanoparticles as a dual imaging probe for targeting hepatocytes in vivo. Magn Reson Med 62(6):1440–1446PubMedGoogle Scholar
  187. 187.
    Lee S, Xie J, Chen X (2010) Peptide-based probes for targeted molecular imaging. Biochemistry 49(7):1364–1376PubMedPubMedCentralGoogle Scholar
  188. 188.
    Lee JW, Yoon DY, Choi CS et al (2008) Anaplastic thyroid carcinoma: computed tomographic differentiation from other thyroid masses. Acta Radiol 49(3):321–327PubMedGoogle Scholar
  189. 189.
    Lewis JS, Lewis MR, Srinivasan A et al (1999) Comparison of four 64Cu-labeled somatostatin analogues in vitro and in a tumor-bearing rat model: evaluation of new derivatives for positron emission tomography imaging and targeted radiotherapy. J Med Chem 42(8):1341–1347PubMedGoogle Scholar
  190. 190.
    Li YT, Cercueil JP, Yuan J et al (2017) Liver intravoxel incoherent motion (ivim) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg 7(1):59–78PubMedPubMedCentralGoogle Scholar
  191. 191.
    Li X, Du X, Huo T, Liu X et al (2009) Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner. Acta Radiol 50(6):583–594Google Scholar
  192. 192.
    Li J, Wang S, Wu C et al (2016) Activatable molecular mri nanoprobe for tumor cell imaging based on gadolinium oxide and iron oxide nanoparticle. Biosens Bioelectron 86:1047–1053PubMedGoogle Scholar
  193. 193.
    Lin C, Luciani A, Itti E et al (2010) Whole-body diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient mapping for staging patients with diffuse large B-cell lymphoma. Eur Radiol 20(8):2027–2038PubMedGoogle Scholar
  194. 194.
    Lindfors KK, Boone JM, Nelson TR et al (2008) Dedicated breast CT: initial clinical experience. Radiology 246(3):725–733PubMedPubMedCentralGoogle Scholar
  195. 195.
    Liu PF, Debatin JF, Caduff RF et al (1998) Improved diagnostic accuracy in dynamic contrast enhanced MRI of the breast by combined quantitative and qualitative analysis. Br J Radiol 71(845):501–509PubMedGoogle Scholar
  196. 196.
    Liu S, Zheng H, Feng Y et al (2017) Prostate cancer diagnosis using deep learning with 3D multiparametric MRI. SPIE Medical Imaging, Orlando, Florida, United StatesGoogle Scholar
  197. 197.
    Loebinger MR, Kyrtatos PG, Turmaine M et al (2009) Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Can Res 69(23):8862–8867Google Scholar
  198. 198.
    Lokling KE, Fossheim SL, Skurtveit R et al (2001) Ph-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies. Magn Reson Imaging 19(5):731–738PubMedGoogle Scholar
  199. 199.
    Longo DL, Arena F, Consolino L et al (2016) Gd-aazta-madec, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners. Biomaterials 75:47–57PubMedGoogle Scholar
  200. 200.
    Louie AY, Huber MM, Ahrens ET et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18(3):321–325Google Scholar
  201. 201.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195PubMedPubMedCentralGoogle Scholar
  202. 202.
    Lustig M, Donoho D, Santos JM et al (2008) Compressed sensing MRI. IEEE Signal Process Soc 25(2):72–82Google Scholar
  203. 203.
    Luttje MP, van Buuren LD, Luijten PR et al (2017) Towards intrinsic R2* imaging in the prostate at 3 and 7 Tesla. Magn Reson Imaging 42:16–21PubMedGoogle Scholar
  204. 204.
    Maeda H, Nakamura H, Fang J (2013) The epr effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79Google Scholar
  205. 205.
    Manjon JV, Coupe P, Buades A et al (2012) New methods for mri denoising based on sparseness and self-similarity. Med Image Anal 16(1):18–27PubMedGoogle Scholar
  206. 206.
    Manjon JV, Coupe P, Marti-Bonmati L et al (2010) Adaptive non-local means denoising of MR images with spatially varying noise levels. J Magn Reson Imaging 31(1):192–203Google Scholar
  207. 207.
    Maruyama S, Ueda J, Kimura A et al (2016) Development and characterization of novel lipocest agents based on thermosensitive liposomes. Magn Reson Med Sci 15(3):324–334PubMedPubMedCentralGoogle Scholar
  208. 208.
    Matuszewski L, Persigehl T, Wall A et al (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235(1):155–161PubMedGoogle Scholar
  209. 209.
    McCollough CH, Leng S, Yu L et al (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653PubMedPubMedCentralGoogle Scholar
  210. 210.
    McMahon MT, Bulte JWM (2018) Two decades of dendrimers as versatile MRI agents: a tale with and without metals. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10(3):e1496PubMedGoogle Scholar
  211. 211.
    Meisamy S, Bolan PJ, Baker EH et al (2004) Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)h MR spectroscopy–a pilot study at 4 t. Radiology 233(2):424–431PubMedGoogle Scholar
  212. 212.
    Melancon MP, Lu W, Huang Q et al (2010) Targeted imaging of tumor-associated M2 macrophages using a macromolecular contrast agent PG-Gd-NIR813. Biomaterials 31(25):6567–6573Google Scholar
  213. 213.
    Mikawa M, Kato H, Okumura M et al (2001) Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjug Chem 12(4):510–514PubMedGoogle Scholar
  214. 214.
    Miles KA (2002) Functional computed tomography in oncology. Eur J Cancer 38(16):2079–2084PubMedGoogle Scholar
  215. 215.
    Miles KA (2006) Perfusion imaging with computed tomography: brain and beyond. Eur Radiol 16(Suppl 7):M37–M43PubMedGoogle Scholar
  216. 216.
    Misselwitz B, Schmitt-Willich H, Michaelis M et al (2002) Interstitial magnetic resonance lymphography using a polymeric t1 contrast agent: initial experience with gadomer-17. Invest Radiol 37(3):146–151PubMedGoogle Scholar
  217. 217.
    Moats R, Ma LQ, Wajed R et al (2000) Magnetic resonance imaging for the evaluation of a novel metastatic orthotopic model of human neuroblastoma in immunodeficient mice. Clin Exp Metas 18(6):455–461Google Scholar
  218. 218.
    Moghaddam SE, Hernandez-Rivera M, Zaibaq NG et al (2018) A new high-performance gadonanotube-polymer hybrid material for stem cell labeling and tracking by mri. Contrast Media Mol Imaging 2018:2853736PubMedPubMedCentralGoogle Scholar
  219. 219.
    Mohammed W, Xunning H, Haibin S et al (2013) Clinical applications of susceptibility-weighted imaging in detecting and grading intracranial gliomas: a review. Cancer Imaging 13:186–195PubMedPubMedCentralGoogle Scholar
  220. 220.
    Montet X, Pastor CM, Vallee JP et al (2007) Improved visualization of vessels and hepatic tumors by micro-computed tomography (CT) using iodinated liposomes. Invest Radiol 42(9):652–658PubMedGoogle Scholar
  221. 221.
    Moore A, Josephson L, Bhorade RM et al (2001) Human transferrin receptor gene as a marker gene for MR imaging. Radiology 221(1):244–250PubMedGoogle Scholar
  222. 222.
    Morawski AM, Winter PM, Crowder KC et al (2004) Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med 51(3):480–486PubMedGoogle Scholar
  223. 223.
    Murrell DH, Zarghami N, Jensen MD et al (2017) MRI surveillance of cancer cell fate in a brain metastasis model after early radiotherapy. Magn Reson Med 78(4):1506–1512Google Scholar
  224. 224.
    Nagy K, Toth M, Major P et al (2013) Performance evaluation of the small-animal nanoscan PET/MRI system. J Nucl Med 54(10):1825–1832PubMedGoogle Scholar
  225. 225.
    Napolitano R, Pariani G, Fedeli F et al (2013) Synthesis and relaxometric characterization of a MRI Gd-based probe responsive to glutamic acid decarboxylase enzymatic activity. J Med Chem 56(6):2466–2477PubMedGoogle Scholar
  226. 226.
    Nilsen L, Fangberget A, Geier O et al (2010) Diffusion-weighted magnetic resonance imaging for pretreatment prediction and monitoring of treatment response of patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. Acta Oncol (Stockholm, Sweden) 49(3):354–360Google Scholar
  227. 227.
    Ntziachristos V, Bremer C, Tung C et al (2002) Imaging cathepsin b up-regulation in ht-1080 tumor models using fluorescence-mediated molecular tomography (FMT). Acad Radiol 9(Suppl 2):S323–S325PubMedGoogle Scholar
  228. 228.
    Olafsen T, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40(3):167–181PubMedPubMedCentralGoogle Scholar
  229. 229.
    Opsahl LR, Uzgiris EE, Vera DR (1995) Tumor imaging with a macromolecular paramagnetic contrast agent: Gadopentetate dimeglumine-polylysine. Acad Radiol 2(9):762–767PubMedGoogle Scholar
  230. 230.
    O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186Google Scholar
  231. 231.
    O’Connor JP, Jackson A, Parker GJ et al (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 96(2):189–195PubMedPubMedCentralGoogle Scholar
  232. 232.
    Padhani AR (2002) Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging 16(4):407–422PubMedGoogle Scholar
  233. 233.
    Padhani AR (2005) Where are we with imaging oxygenation in human tumours? Cancer Imaging 5:128–130PubMedPubMedCentralGoogle Scholar
  234. 234.
    Padhani AR, Krohn KA, Lewis JS et al (2007) Imaging oxygenation of human tumours. Eur Radiol 17(4):861–872PubMedGoogle Scholar
  235. 235.
    Pandit P, Qi Y, Story J et al (2010) Multishot propeller for high-field preclinical MRI. Magn Reson Med 64(1):47–53PubMedPubMedCentralGoogle Scholar
  236. 236.
    Parivar F, Hricak H, Shinohara K et al (1996) Detection of locally recurrent prostate cancer after cryosurgery: evaluation by transrectal ultrasound, magnetic resonance imaging, and three-dimensional proton magnetic resonance spectroscopy. Urology 48(4):594–599PubMedGoogle Scholar
  237. 237.
    Pathak AP, Gimi B, Glunde K et al (2004) Molecular and functional imaging of cancer: advances in MRI and MRS. Methods Enzymol 386:3–60PubMedGoogle Scholar
  238. 238.
    Paulus MJ, Gleason SS, Kennel SJ et al (2000) High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia 2(1–2):62–70PubMedPubMedCentralGoogle Scholar
  239. 239.
    Pereira SM, Moss D, Williams SR et al (2015) Overexpression of the mri reporter genes ferritin and transferrin receptor affect iron homeostasis and produce limited contrast in mesenchymal stem cells. Int J Mol Sci 16(7):15481–15496PubMedPubMedCentralGoogle Scholar
  240. 240.
    Pereira SM, Williams SR, Murray P et al (2016) Ms-1 maga: revisiting its efficacy as a reporter gene for MRI. Mol Imaging 15Google Scholar
  241. 241.
    Perez JM, Josephson L, O’Loughlin T et al (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820PubMedGoogle Scholar
  242. 242.
    Piert M, Montgomery J, Kunju LP et al (2016) 18f-choline PET/MRI: the additional value of pet for MRI-guided transrectal prostate biopsies. J Nucl Med 57(7):1065–1070PubMedPubMedCentralGoogle Scholar
  243. 243.
    Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63SPubMedGoogle Scholar
  244. 244.
    Ponce AM, Viglianti BL, Yu D et al (2007) Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 99(1):53–63PubMedGoogle Scholar
  245. 245.
    Ponomarev V (2009) Nuclear imaging of cancer cell therapies. J Nucl Med 50(7):1013–1016PubMedPubMedCentralGoogle Scholar
  246. 246.
    Popovtzer R, Agrawal A, Kotov NA et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596PubMedPubMedCentralGoogle Scholar
  247. 247.
    Preibisch C, Shi K, Kluge A et al (2017) Characterizing hypoxia in human glioma: a simultaneous multimodal MRI and PET study. NMR Biomed 30(11)Google Scholar
  248. 248.
    Pu F, Salarian M, Xue S et al (2016) Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI. Nanoscale 8(25):12668–12682PubMedPubMedCentralGoogle Scholar
  249. 249.
    Purcell EMT HC, Pound RV (1946) Resonance absorption by nuclear magnetic moment in a solid. Phys Rev 69:37Google Scholar
  250. 250.
    Qian Y, Stenger VA, Boada FE (2009) Parallel imaging with 3D TPI trajectory: SNR and acceleration benefits. Magn Reson Imaging 27(5):656–663PubMedGoogle Scholar
  251. 251.
    Qiao XJ, Kim HG, Wang DJJ et al (2017) Application of arterial spin labeling perfusion MRI to differentiate benign from malignant intracranial meningiomas. Eur J Radiol 97:31–36PubMedPubMedCentralGoogle Scholar
  252. 252.
    Radbruch A, Eidel O, Wiestler B et al (2014) Quantification of tumor vessels in glioblastoma patients using time-of-flight angiography at 7 tesla: a feasibility study. PLoS ONE 9(11):e110727PubMedPubMedCentralGoogle Scholar
  253. 253.
    Raghunand N, Jagadish B, Trouard TP et al (2006) Redox-sensitive contrast agents for mri based on reversible binding of thiols to serum albumin. Magn Reson Med 55(6):1272–1280PubMedPubMedCentralGoogle Scholar
  254. 254.
    Rahmim A, Lodge MA, Karakatsanis NA et al (2019) Dynamic whole-body pet imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging 46(2):501–518Google Scholar
  255. 255.
    Rajeshkumar NV, Dutta P, Yabuuchi S et al (2015) Therapeutic targeting of the warburg effect in pancreatic cancer relies on an absence of p53 function. Can Res 75(16):3355–3364Google Scholar
  256. 256.
    Ranga A, Agarwal Y, Garg KJ (2017) Gadolinium based contrast agents in current practice: risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging 27(2):141–147PubMedPubMedCentralGoogle Scholar
  257. 257.
    Rani M, Dhok SB, Deshmukh RB (2018) A systematic review of compressive sensing: concepts, implementations and applications. IEEE Access 6:4875–4894Google Scholar
  258. 258.
    Ratnakar SJ, Soesbe TC, Lumata LL et al (2013) Modulation of cest images in vivo by t1 relaxation: a new approach in the design of responsive paracest agents. J Am Chem Soc 135(40):14904–14907PubMedGoogle Scholar
  259. 259.
    Ray S, Li Z, Hsu CH et al (2018) Dendrimer- and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics 8(22):6322–6349PubMedPubMedCentralGoogle Scholar
  260. 260.
    Reichel D, Tripathi M, Perez JM (2019) Biological effects of nanoparticles on macrophage polarization in the tumor microenvironment. Nanotheranostics 3(1):66–88PubMedPubMedCentralGoogle Scholar
  261. 261.
    Renan MJ (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7(3):139–146PubMedGoogle Scholar
  262. 262.
    Ritman EL (2002) Molecular imaging in small animals–roles for micro-ct. J Cell Biochem Suppl 39:116–124PubMedGoogle Scholar
  263. 263.
    Ronald JA, Chen JW, Chen Y et al (2009) Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 120(7):592–599PubMedPubMedCentralGoogle Scholar
  264. 264.
    Rosenkrantz AB, Friedman K, Chandarana H et al (2016) Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 206(1):162–172PubMedGoogle Scholar
  265. 265.
    Sagiyama K, Mashimo T, Togao O et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci USA 111(12):4542–4547PubMedGoogle Scholar
  266. 266.
    Sandilya M, Nirmala SR (2017) Compressed sensing trends in magnetic resonance imaging. Eng Sci Technol Int J 20(4):1342–1352Google Scholar
  267. 267.
    Santi A, Kugeratski FG, Zanivan S (2018) Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics 18(5–6):e1700167PubMedGoogle Scholar
  268. 268.
    Schambach SJ, Bag S, Schilling L et al (2010) Application of micro-CT in small animal imaging. Methods 50(1):2–13PubMedGoogle Scholar
  269. 269.
    Schepkin VD (2016) Sodium MRI of glioma in animal models at ultrahigh magnetic fields. NMR Biomed 29(2):175–186PubMedGoogle Scholar
  270. 270.
    Schepkin VD, Chenevert TL, Kuszpit K et al (2006) Sodium and proton diffusion MRI as biomarkers for early therapeutic response in subcutaneous tumors. Magn Reson Imaging 24(3):273–278PubMedPubMedCentralGoogle Scholar
  271. 271.
    Schepkin VD, Choy IO, Budinger TF et al (1998) Sodium TQF NMR and intracellular sodium in isolated crystalloid perfused rat heart. Magn Reson Med 39(4):557–563PubMedGoogle Scholar
  272. 272.
    Schmid-Bindert G, Henzler T, Chu TQ et al (2012) Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 22(1):93–103PubMedGoogle Scholar
  273. 273.
    Schottelius M, Laufer B, Kessler H et al (2009) Ligands for mapping αvβ3-integrin expression in vivo. Acc Chem Res 42(7):969–980PubMedGoogle Scholar
  274. 274.
    Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T et al (1991) In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radiol 26(11):969–974PubMedGoogle Scholar
  275. 275.
    Schwendener RA, Wuthrich R, Duewell S et al (1990) A pharmacokinetic and MRI study of unilamellar gadolinium-, manganese-, and iron-DTPA-stearate liposomes as organ-specific contrast agents. Invest Radiol 25(8):922–932PubMedGoogle Scholar
  276. 276.
    Schwickert HC, Stiskal M, Roberts TP et al (1996) Contrast-enhanced mr imaging assessment of tumor capillary permeability: effect of irradiation on delivery of chemotherapy. Radiology 198(3):893–898PubMedGoogle Scholar
  277. 277.
    Semelka RC, Helmberger TK (2001) Contrast agents for mr imaging of the liver. Radiology 218(1):27–38PubMedGoogle Scholar
  278. 278.
    Serganova I, Mayer-Kukuck P, Huang R et al (2008) Molecular imaging: reporter gene imaging. Handbook Exp Pharmacol (185 Pt 2):167–223Google Scholar
  279. 279.
    Serkova NJ (2017) Nanoparticle-based magnetic resonance imaging on tumor-associated macrophages and inflammation. Front Immunol 8:590PubMedPubMedCentralGoogle Scholar
  280. 280.
    Shen N, Zhao L, Jiang J et al (2016) Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging 44(3):620–632PubMedGoogle Scholar
  281. 281.
    Shimokawa M, Ohta Y, Nishikori S et al (2017) Visualization and targeting of lgr5(+) human colon cancer stem cells. Nature 545(7653):187–192Google Scholar
  282. 282.
    Shin SH, Park SH, Kang SH et al (2017) Fluorine-19 magnetic resonance imaging and positron emission tomography of tumor-associated macrophages and tumor metabolism. Contrast Media Mol Imaging 2017:4896310PubMedPubMedCentralGoogle Scholar
  283. 283.
    Shubayev VI, Pisanic TR 2nd, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61(6):467–477PubMedPubMedCentralGoogle Scholar
  284. 284.
    Sinharay S, Randtke EA, Howison CM et al (2018) Detection of enzyme activity and inhibition during studies in solution, in vitro and in vivo with catalycest MRI. Mol Imaging Biol. 20(2):240–248PubMedPubMedCentralGoogle Scholar
  285. 285.
    Sitharaman B, Tran LA, Pham QP et al (2007) Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol Imaging 2(3):139–146PubMedGoogle Scholar
  286. 286.
    Sitharaman B, Wilson LJ (2006) Gadonanotubes as new high-performance MRI contrast agents. Int J Nanomed 1(3):291–295Google Scholar
  287. 287.
    Smith TA (2010) Towards detecting the her-2 receptor and metabolic changes induced by her-2-targeted therapies using medical imaging. Br J Radiol 83(992):638–644PubMedPubMedCentralGoogle Scholar
  288. 288.
    Soliman RK, Gamal SA, Essa AA et al (2018) Preoperative grading of glioma using dynamic susceptibility contrast MRI: relative cerebral blood volume analysis of intra-tumoural and peri-tumoural tissue. Clin Neurol Neurosurg 167:86–92PubMedGoogle Scholar
  289. 289.
    Spanoghe M, Lanens D, Dommisse R et al (1992) Proton relaxation enhancement by means of serum albumin and poly-l-lysine labeled with DTPA-Gd3 + : relaxivities as a function of molecular weight and conjugation efficiency. Magn Reson Imaging 10(6):913–917PubMedGoogle Scholar
  290. 290.
    Spaw M, Anant S, Thomas SM (2017) Stromal contributions to the carcinogenic process. Mol Carcinog 56(4):1199–1213PubMedGoogle Scholar
  291. 291.
    Speck O, Chang L, DeSilva NM et al (2000) Perfusion MRI of the human brain with dynamic susceptibility contrast: gradient-echo versus spin-echo techniques. J Magn Reson Imaging 12(3):381–387PubMedGoogle Scholar
  292. 292.
    Stadlbauer A, Zimmermann M, Bennani-Baiti B et al (2018) Development of a non-invasive assessment of hypoxia and neovascularization with magnetic resonance imaging in benign and malignant breast tumors: initial results. Mol Imaging BiolGoogle Scholar
  293. 293.
    Stegman LD, Rehemtulla A, Beattie B et al (1999) Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci USA 96(17):9821–9826PubMedGoogle Scholar
  294. 294.
    Szyszko TA, Cook GJR (2018) PET/CT and PET/MRI in head and neck malignancy. Clin Radiol 73(1):60–69PubMedGoogle Scholar
  295. 295.
    Tang C, Russell PJ, Martiniello-Wilks R et al (2010) Nanoparticles and cellular carriers—allies in cancer imaging and cellular gene therapy? Stem cells. Dayton, OhioGoogle Scholar
  296. 296.
    Teh I, Golay X, Larkman DJ (2010) Propeller for motion-robust imaging of in vivo mouse abdomen at 9.4 T. NMR Biomed 23(9):1077–1086Google Scholar
  297. 297.
    Tei L, Mazooz G, Shellef Y et al (2010) Novel MRI and fluorescent probes responsive to the factor xiii transglutaminase activity. Contrast Media Mol Imaging 5(4):213–222PubMedGoogle Scholar
  298. 298.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the United States, national cancer institute of Canada. J Natl Cancer Inst 92(3):205–16Google Scholar
  299. 299.
    Thorek DL, Chen AK, Czupryna J et al (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38PubMedGoogle Scholar
  300. 300.
    Thorek DL, Tsourkas A (2008) Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells. Biomaterials 29(26):3583–3590PubMedPubMedCentralGoogle Scholar
  301. 301.
    Thulborn KR, Lu A, Atkinson IC et al (2018) Residual tumor volume, cell volume fraction, and tumor cell kill during fractionated chemoradiation therapy of human glioblastoma using quantitative sodium MR imaging. Clin Cancer ResGoogle Scholar
  302. 302.
    Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10(3):223–232Google Scholar
  303. 303.
    Towner RA, Smith N, Doblas S et al (2010) In vivo detection of inducible nitric oxide synthase in rodent gliomas. Free Radic Biol Med 48(5):691–703Google Scholar
  304. 304.
    Towner RA, Smith N, Asano Y et al (2010) Molecular magnetic resonance imaging approaches used to aid in the understanding of angiogenesis in vivo: implications for tissue engineering. Tissue Eng Part A 16(2):357–364Google Scholar
  305. 305.
    Townsend DW (2008) Dual-modality imaging: combining anatomy and function. J Nucl Med 49(6):938–955PubMedGoogle Scholar
  306. 306.
    Tremblay ML, Davis C, Bowen CV et al (2018) Using MRI cell tracking to monitor immune cell recruitment in response to a peptide-based cancer vaccine. Magn Reson Med 80(1):304–316PubMedGoogle Scholar
  307. 307.
    Trubetskoy VS, Cannillo JA, Milshtein A et al (1995) Controlled delivery of Gd-containing liposomes to lymph nodes: surface modification may enhance MRI contrast properties. Magn Reson Imaging 13(1):31–37PubMedGoogle Scholar
  308. 308.
    Tsien C, Galban CJ, Chenevert TL et al (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28(13):2293–2299PubMedPubMedCentralGoogle Scholar
  309. 309.
    Tsourkas A, Newton G, Perez JM et al (2005) Detection of peroxidase/H2O2-mediated oxidation with enhanced yellow fluorescent protein. Anal Chem 77(9):2862–2867PubMedGoogle Scholar
  310. 310.
    Turetschek K, Floyd E, Helbich T et al (2001) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14(3):237–242PubMedGoogle Scholar
  311. 311.
    Turetschek K, Huber S, Floyd E et al (2001) Mr imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 218(2):562–569PubMedGoogle Scholar
  312. 312.
    Turetschek K, Roberts TP, Floyd E et al (2001) Tumor microvascular characterization using ultrasmall superparamagnetic iron oxide particles (USPIO) in an experimental breast cancer model. J Magn Reson Imaging 13(6):882–888PubMedGoogle Scholar
  313. 313.
    Unger EC, MacDougall P, Cullis P et al (1989) Liposomal Gd-DTPA: effect of encapsulation on enhancement of hepatoma model by MRI. Magn Reson Imaging 7(4):417–423PubMedGoogle Scholar
  314. 314.
    Unger EC, Winokur T, MacDougall P et al (1989) Hepatic metastases: liposomal Gd-DTPA-enhanced MR imaging. Radiology 171(1):81–85PubMedGoogle Scholar
  315. 315.
    Van Audenhaege K, Van Holen R, Vanhove C et al (2015) Collimator design for a multipinhole brain SPECT insert for mri. Med Phys 42(11):667989Google Scholar
  316. 316.
    Van Elmpt W, Zegers CM, Das M et al (2014) Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 6(4):319–327Google Scholar
  317. 317.
    Van Kasteren SI, Campbell SJ, Serres S et al (2009) Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci USA 106(1):18–23Google Scholar
  318. 318.
    Van Laarhoven HW, Klomp DW, Rijpkema M et al (2007) Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium-DTPA-enhanced MRI and localized 19F mrs pharmacokinetic studies of 5-fluorouracil. NMR Biomed 20(2):128–140Google Scholar
  319. 319.
    Van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC et al (2003) Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial results. Eur Radiol 13(8):1849–1858Google Scholar
  320. 320.
    Van Tilborg GA, Strijkers GJ, Pouget EM et al (2008) Kinetics of avidin-induced clearance of biotinylated bimodal liposomes for improved mr molecular imaging. Magn Reson Med 60(6):1444–1456Google Scholar
  321. 321.
    Van Vliet M, van Dijke CF, Wielopolski PA et al (2005) MR angiography of tumor-related vasculature: from the clinic to the micro-environment. Radiographics 25 Suppl 1:S85–S97 (discussion S-8)Google Scholar
  322. 322.
    Van Zijl PCM, Lam WW, Xu J et al (2018) Magnetization transfer contrast and chemical exchange saturation transfer MRI. Features and analysis of the field-dependent saturation spectrum. NeuroImage 168:222–241Google Scholar
  323. 323.
    Vandenberghe S, Marsden PK (2015) PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 60(4):R115–R154PubMedGoogle Scholar
  324. 324.
    Vaupel P (2009) Prognostic potential of the pre-therapeutic tumor oxygenation status. Adv Exp Med Biol 645:241–246Google Scholar
  325. 325.
    Vaupel P (2009) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Heidelberg, pp 273–290Google Scholar
  326. 326.
    Vaupel P (2009) Pathophysiology of solid tumors. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Heidelberg, pp 51–92Google Scholar
  327. 327.
    Vautier J, Heilmann M, Walczak C et al (2010) 2D and 3D radial multi-gradient-echo DCE MRI in murine tumor models with dynamic R*2-corrected R1 mapping. Magn Reson Med 64(1):313–318PubMedGoogle Scholar
  328. 328.
    Villaraza AJ, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110(5):2921–2959Google Scholar
  329. 329.
    Wahl RL, Jacene H, Kasamon Y et al (2009) From recist to percist: evolving considerations for pet response criteria in solid tumors. J Nucl Med 50(Suppl 1):S122–S150Google Scholar
  330. 330.
    Walter G, Barton ER, Sweeney HL (2000) Noninvasive measurement of gene expression in skeletal muscle. Proc Natl Acad Sci USA 97(10):5151–5155PubMedGoogle Scholar
  331. 331.
    Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331PubMedGoogle Scholar
  332. 332.
    Wang Y, Liu M, Jin ML (2017) Blood oxygenation level-dependent magnetic resonance imaging of breast cancer: Correlation with carbonic anhydrase ix and vascular endothelial growth factor. Chin Med J (Engl) 130(1):71–76Google Scholar
  333. 333.
    Warntjes JB, Dahlqvist O, Lundberg P (2007) Novel method for rapid, simultaneous T1, T*2, and proton density quantification. Magn Reson Med 57(3):528–537PubMedGoogle Scholar
  334. 334.
    Warntjes JB, Leinhard OD, West J et al (2008) Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 60(2):320–329PubMedGoogle Scholar
  335. 335.
    Watanabe Y, Uotani K, Nakazawa T et al (2009) Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur Radiol 19(4):1019–1024PubMedGoogle Scholar
  336. 336.
    Watkins GA, Jones EF, Scott Shell M et al (2009) Development of an optimized activatable MMP-14 targeted SPECT imaging probe. Bioorg Med Chem 17(2):653–659PubMedGoogle Scholar
  337. 337.
    Weissleder R, Moore A, Mahmood U et al (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6(3):351–355Google Scholar
  338. 338.
    Weissleder R, Simonova M, Bogdanova A et al (1997) Mr imaging and scintigraphy of gene expression through melanin induction. Radiology 204(2):425–429PubMedGoogle Scholar
  339. 339.
    Wiener EC, Brechbiel MW, Brothers H et al (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31(1):1–8PubMedGoogle Scholar
  340. 340.
    Wikstrom MG, Moseley ME, White DL et al (1989) Contrast-enhanced MRI of tumors. Comparison of Gd-DTPA and a macromolecular agent. Invest Radiol 24(8):609–615Google Scholar
  341. 341.
    Willemink MJ, Persson M, Pourmorteza A et al (2018) Photon-counting CT: technical principles and clinical prospects. Radiology 289(2):293–312PubMedGoogle Scholar
  342. 342.
    Willmann JK, van Bruggen N, Dinkelborg LM et al (2008) Molecular imaging in drug development. Nat Rev 7(7):591–607Google Scholar
  343. 343.
    Wilson CB, Lammertsma AA, McKenzie CG et al (1992) Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Can Res 52(6):1592–1597Google Scholar
  344. 344.
    Winter PM, Caruthers SD, Allen JS et al (2010) Molecular imaging of angiogenic therapy in peripheral vascular disease with αvβ3-integrin-targeted nanoparticles. Magn Reson Med 64(2):369–376PubMedPubMedCentralGoogle Scholar
  345. 345.
    Wirestam R, Borg M, Brockstedt S et al (2001) Perfusion-related parameters in intravoxel incoherent motion mr imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol 42(2):123–128PubMedGoogle Scholar
  346. 346.
    World Health Organisation (1979) Who handbook for reporting results of cancer treatment. WHOGoogle Scholar
  347. 347.
    Wu AM, Yazaki PJ (2000) Designer genes: recombinant antibody fragments for biological imaging. Q J Nucl Med 44(3):268–283PubMedGoogle Scholar
  348. 348.
    Wu L, Cao Y, Liao C et al (2010) Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: a meta-analysis. Eur J RadiolGoogle Scholar
  349. 349.
    Wyss C, Schaefer SC, Juillerat-Jeanneret L et al (2009) Molecular imaging by micro-CT: specific e-selectin imaging. Eur Radiol 19(10):2487–2494PubMedGoogle Scholar
  350. 350.
    Xu X, Yan Y, Liu F et al (2018) Folate receptor-targeted (19) F MR molecular imaging and proliferation evaluation of lung cancer. J Magn Reson Imaging 48(6):1617–1625PubMedGoogle Scholar
  351. 351.
    Yan K, Fu Z, Yang C et al (2015) Assessing amide proton transfer (apt) MRI contrast origins in 9 l gliosarcoma in the rat brain using proteomic analysis. Mol Imaging Biol 17(4):479–487PubMedPubMedCentralGoogle Scholar
  352. 352.
    Yang X, Gong H, Quan G et al (2010) Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging. Rev Sci Instrum 81(5):054304PubMedGoogle Scholar
  353. 353.
    Yao W, Qu N, Lu Z et al (2009) The application of T1 and T2 relaxation time and magnetization transfer ratios to the early diagnosis of patellar cartilage osteoarthritis. Skeletal Radiol 38(11):1055–1062PubMedGoogle Scholar
  354. 354.
    Yoo B, Pagel MD (2008) An overview of responsive MRI contrast agents for molecular imaging. Front Biosci 13:1733–1752PubMedGoogle Scholar
  355. 355.
    Yoo B, Raam MS, Rosenblum RM et al (2007) Enzyme-responsive paracest MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol Imaging 2(4):189–198PubMedGoogle Scholar
  356. 356.
    Yordanov AT, Kobayashi H, English SJ et al (2003) Gadolinium-labeled dendrimers as biometric nanoprobes to detect vascular permeability. J Mater Chem 13(7):1523–1525Google Scholar
  357. 357.
    Yu JX, Gulaka PK, Liu L et al (2012) Novel Fe(3 +)-based (1)h MRI beta-galactosidase reporter molecules. ChemPlusChem 77(5):370–378PubMedPubMedCentralGoogle Scholar
  358. 358.
    Yu JX, Kodibagkar VD, Cui W et al (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12(7):819–848PubMedGoogle Scholar
  359. 359.
    Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Can Res 55(17):3752–3756Google Scholar
  360. 360.
    Zahra MA, Hollingsworth KG, Sala E et al (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74PubMedGoogle Scholar
  361. 361.
    Zhang F, Duan X, Lu L et al (2017) In vivo long-term tracking of neural stem cells transplanted into an acute ischemic stroke model with reporter gene-based bimodal mr and optical imaging. Cell Transplant 26(10):1648–1662PubMedPubMedCentralGoogle Scholar
  362. 362.
    Zhang X, Lin Y, Gillies RJ (2010) Tumor pH and its measurement. J Nucl Med 51(8):1167–1170PubMedPubMedCentralGoogle Scholar
  363. 363.
    Zhang LJ, Yang GF, Wu SY et al (2013) Dual-energy CT imaging of thoracic malignancies. Cancer Imaging 13:81–91PubMedGoogle Scholar
  364. 364.
    Zhao D, Ran S, Constantinescu A et al (2003) Tumor oxygen dynamics: correlation of in vivo MRI with histological findings. Neoplasia 5(4):308–318PubMedPubMedCentralGoogle Scholar
  365. 365.
    Zhao X, Wen Z, Li C et al (2015) Quantitative amide proton transfer imaging with reduced interferences from magnetization transfer asymmetry for human brain tumors at 3T. Magn Reson Med 74(1):208–216PubMedGoogle Scholar
  366. 366.
    Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555(7697):487–492Google Scholar
  367. 367.
    Zucker EJ, Cheng JY, Haldipur A et al (2018) Free-breathing pediatric chest MRI: performance of self-navigated golden-angle ordered conical ultrashort echo time acquisition. J Magn Reson Imaging 47(1):200–209PubMedGoogle Scholar
  368. 368.
    Zumsteg A, Strittmatter K, Klewe-Nebenius D et al (2010) A bioluminescent mouse model of pancreatic {beta}-cell carcinogenesis. Carcinogenesis 31(8):1465–1474PubMedGoogle Scholar
  369. 369.
    Zurkiya O, Chan AW, Hu X (2008) Maga is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59(6):1225–1231PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Monique R. Bernsen
    • 1
    Email author
  • Marcel van Straten
    • 2
  • Gyula Kotek
    • 2
  • Esther A. H. Warnert
    • 2
  • Joost C. Haeck
    • 2
  • Alessandro Ruggiero
    • 1
  • Piotr A. Wielopolski
    • 2
  • Gabriel P. Krestin
    • 2
  1. 1.Department of RadiologyRoyal Papworth Hospital NHS Foundation TrustCambridgeUK
  2. 2.Department of Radiology & Nuclear MedicineErasmus MC-University Medical Center RotterdamRotterdamThe Netherlands

Personalised recommendations