Advertisement

Molecular Imaging in Oncology: Advanced Microscopy Techniques

  • Dimitrios Kapsokalyvas
  • Marc A. M. J. van ZandvoortEmail author
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)

Abstract

Preclinical studies usually require high levels of morphological, functional, and biochemical information at subcellular resolution. This type of information cannot be obtained from clinical imaging techniques, such as MRI, PET/CT, or US. Luckily, many microscopy techniques exist that can offer this information, also for malignant tissues and therapeutic approaches. In this overview, we discuss the various advanced optical microscopy techniques and their applications in oncological research. After a short introduction in Sect. 16.1, we continue in Sect. 16.2 with a discussion on fluorescent labelling strategies, followed in Sect. 16.3 by an in-depth description of confocal, light-sheet, two-photon, and super-resolution microscopy. We end in Sect. 16.4 with a focus on the applications, specifically in oncology.

References

  1. 1.
    Orlova A et al (2006) Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–4348PubMedGoogle Scholar
  2. 2.
    Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136PubMedGoogle Scholar
  3. 3.
    Keppler A et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89PubMedGoogle Scholar
  4. 4.
    Liss V, Barlag B, Nietschke M, Hensel M (2015) Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy. Sci Rep 5Google Scholar
  5. 5.
    Chozinski TJ, Gagnon LA, Vaughan JC (2014) Twinkle, twinkle little star: photoswitchable fluorophores for super-resolution imaging. FEBS Lett 588:3603–3612PubMedGoogle Scholar
  6. 6.
    Van De Linde S et al (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6:991–1009PubMedGoogle Scholar
  7. 7.
    Pawley JB (2006) Handbook of biological confocal microscopy, 3rd edn.  https://doi.org/10.1007/978-0-387-45524-2
  8. 8.
    Dobbs J et al (2015) Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies. Breast Cancer Res Treat 149:303–310PubMedGoogle Scholar
  9. 9.
    Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer E. HK (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009Google Scholar
  10. 10.
    Method of the Year 2014 (2014) Nat Methods 12:1Google Scholar
  11. 11.
    Keller PJ, Dodt HU (2012) Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22:138–143PubMedGoogle Scholar
  12. 12.
    Chen BC et al (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346Google Scholar
  13. 13.
    Liu TL et al (2018) Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science.  https://doi.org/10.1126/science.aaq1392
  14. 14.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76Google Scholar
  15. 15.
    Masters BR, So PTC, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 72:2405–2412PubMedPubMedCentralGoogle Scholar
  16. 16.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940PubMedGoogle Scholar
  17. 17.
    Patterson GH, Piston DW (2000) Photobleaching in two-photon excitation microscopy. Biophys J 78:2159–2162PubMedPubMedCentralGoogle Scholar
  18. 18.
    Perry SW, Burke RM, Brown EB (2012) Two-photon and second harmonic microscopy in clinical and translational cancer research. Ann Biomed Eng 40:277–291PubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu J (2015) Two-photon microscopy in pre-clinical and clinical cancer research. Front Optoelectron 8:141–151Google Scholar
  20. 20.
    Condeelis J, Weissleder R (2010) In vivo imaging in cancer. Cold Spring Harbor Perspect Biol 2Google Scholar
  21. 21.
    Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metas 26:357–370Google Scholar
  22. 22.
    Konig K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104PubMedGoogle Scholar
  23. 23.
    Wang BG, Konig K, Halbhuber KJ (2010) Two-photon microscopy of deep intravital tissues and its merits in clinical research. J Microsc 238:1–20PubMedGoogle Scholar
  24. 24.
    Staughton TJ, McGillicuddy CJ, Weinberg PD (2001) Techniques for reducing the interfering effects of autofluorescence in fluorescence microscopy: improved detection of sulphorhodamine B-labelled albumin in arterial tissue. J Microsc 201:70–76PubMedGoogle Scholar
  25. 25.
    Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32PubMedGoogle Scholar
  26. 26.
    Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645Google Scholar
  27. 27.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87PubMedGoogle Scholar
  29. 29.
    Heintzmann R, Huser T (2017) Super-resolution structured illumination microscopy. Chem Rev 117:13890–13908PubMedGoogle Scholar
  30. 30.
    Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A 19:1599Google Scholar
  31. 31.
    Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci 102:13081–13086PubMedGoogle Scholar
  32. 32.
    Vermeulen L et al (2013) Defining stem cell dynamics in models of intestinal tumor initiation. Science 342:995–998Google Scholar
  33. 33.
    Denais CM et al (2016) Nuclear envelope rupture and repair during cancer cell migration. Science 352:353–358Google Scholar
  34. 34.
    Shimokawa M et al (2017) Visualization and targeting of LGR5 + human colon cancer stem cells. Nature 545:187–192Google Scholar
  35. 35.
    Que S (2015) Non-invasive imaging technologies for the delineation of basal cell carcinomas. J Invest Dermatol 135:S32Google Scholar
  36. 36.
    Que SKT (2015) Research techniques made simple: noninvasive imaging technologies for the delineation of basal cell carcinomas. J Investig Dermatol 136:e33–e38Google Scholar
  37. 37.
    Schiffhauer LM et al (2009) Confocal microscopy of unfixed breast needle core biopsies: a comparison to fixed and stained sections. BMC Cancer 9Google Scholar
  38. 38.
    Tanaka N et al (2017) Whole-tissue biopsy phenotyping of three-dimensional tumours reveals patterns of cancer heterogeneity. Nat Biomed Eng 1:796–806PubMedGoogle Scholar
  39. 39.
    Uhlén P, Tanaka N (2018) Improved pathological examination of tumors with 3D light-sheet microscopy. Trends Cancer 4:337–341PubMedGoogle Scholar
  40. 40.
    Glaser AK et al (2017) Light-sheet microscopy for slide-free non-destructive pathology of large clinical specimens. Nat Biomed Eng 1Google Scholar
  41. 41.
    Matsui T et al (2017) Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions. Sci Rep 7Google Scholar
  42. 42.
    Cicchi R et al (2010) Time- and Spectral-resolved two-photon imaging of healthy bladder mucosa and carcinoma in situ. Opt Express 18:3840–3849PubMedGoogle Scholar
  43. 43.
    Wu X et al (2013) Label-free detection of breast masses using multiphoton microscopy. PLoS One 8Google Scholar
  44. 44.
    Skala MC et al (2007) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104:19494–19499PubMedGoogle Scholar
  45. 45.
    Ostrander JH et al (2010) Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res 70:4759–4766PubMedGoogle Scholar
  46. 46.
    Liu Z et al (2018) Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Sci Adv 4Google Scholar
  47. 47.
    Huang S, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825PubMedPubMedCentralGoogle Scholar
  48. 48.
    Alhallak K et al (2016) Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Clin Oncol 34:2303–2311Google Scholar
  49. 49.
    Patalay R et al (2011) Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels. Biomed Opt Express 2:3295–3308PubMedPubMedCentralGoogle Scholar
  50. 50.
    Stringari C, Nourse JL, Flanagan LA, Gratton E (2012) Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS ONE.  https://doi.org/10.1371/journal.pone.0048014CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Stuntz E et al (2017) Endogenous two-photon excited fluorescence imaging characterizes neuron and astrocyte metabolic responses to manganese toxicity/631/378/1689/364/639/624/1111/55/14/69/14/63/123 article. Sci Rep.  https://doi.org/10.1038/s41598-017-01015-9CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pouli D et al (2016) Imaging mitochondrial dynamics in human skin reveals depth-dependent hypoxia and malignant potential for diagnosis. Sci Transl Med 8Google Scholar
  53. 53.
    So P, Kim H, Kochevar I (1998) Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures. Opt Express 3:339–350PubMedGoogle Scholar
  54. 54.
    Konig K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8:432–439PubMedGoogle Scholar
  55. 55.
    König K, Konig K (2008) Clinical multiphoton tomography. J Biophotonics 1:13–23PubMedGoogle Scholar
  56. 56.
    Breunig HG, Studier H, Konig K (2010) Multiphoton excitation characteristics of cellular fluorophores of human skin in vivo. Opt Express 18:7857–7871PubMedPubMedCentralGoogle Scholar
  57. 57.
    König K et al (2007) Clinical two-photon microendoscopy. Microsc Res Tech 70:398–402PubMedGoogle Scholar
  58. 58.
    Balu M, Mikami H, Hou J, Potma EO, Tromberg BJ (2016) Rapid mesoscale multiphoton microscopy of human skin. Biomed Opt Express 7:4375PubMedPubMedCentralGoogle Scholar
  59. 59.
    Heuke S et al (2013) Detection and discrimination of non-melanoma skin cancer by multimodal imaging. Healthcare 1:64–83PubMedPubMedCentralGoogle Scholar
  60. 60.
    Balu M et al (2015) In vivo multiphoton microscopy of basal cell carcinoma. JAMA Dermatol 151:1068–1074PubMedPubMedCentralGoogle Scholar
  61. 61.
    Cicchi R et al (2007) Multidimensional non-linear laser imaging of basal cell carcinoma. Opt Express 15:10135PubMedGoogle Scholar
  62. 62.
    Patalay R et al (2012) Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas. PLoS One 7Google Scholar
  63. 63.
    Seidenari S et al (2013) Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PLoS One 8:e70682Google Scholar
  64. 64.
    Flesken-Nikitin A, Williams RM, Zipfel WR, Webb WW, Nikitin AY (2004) Use of multiphoton imaging for studying cell migration in the mouse. Methods Mol Biol 294(335–46):335–346Google Scholar
  65. 65.
    Sano T et al (2016) Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP. Physiol Rep 4Google Scholar
  66. 66.
    Wu Z et al (2017) Multi-photon microscopy in cardiovascular research. Methods 130:79–89PubMedGoogle Scholar
  67. 67.
    Kolesnikov M, Farache J, Shakhar G (2015) Intravital two-photon imaging of the gastrointestinal tract. J Immunol Methods 421:73–80PubMedGoogle Scholar
  68. 68.
    Wyckoff J, Gligorijevic B, Entenberg D, Segall J, Condeelis J (2011) High-resolution multiphoton imaging of tumors in vivo. Cold Spring Harb Protoc 6:1167–1184Google Scholar
  69. 69.
    Drew PJ et al (2010) Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7:981–984PubMedPubMedCentralGoogle Scholar
  70. 70.
    Sawinski J et al (2009) Visually evoked activity in cortical cells imaged in freely moving animals. Proc Natl Acad Sci 106:19557–19562PubMedGoogle Scholar
  71. 71.
    Megens RTA et al (2010) In vivo high-resolution structural imaging of large arteries in small rodents using two-photon laser scanning microscopy. J Biomed Opt 15:11108Google Scholar
  72. 72.
    Bewersdorf J, Pick R, Hell SW (1998) Multifocal multiphoton microscopy. Opt Lett 23:655PubMedGoogle Scholar
  73. 73.
    Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M (2007) The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys J 93:2519–2529PubMedPubMedCentralGoogle Scholar
  74. 74.
    Kirkpatrick N et al (2012) Video-rate resonant scanning multiphoton microscopy: an emerging technique for intravital imaging of the tumor microenvironment. IntraVital 1:60–68Google Scholar
  75. 75.
    Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930PubMedGoogle Scholar
  76. 76.
    Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457PubMedGoogle Scholar
  77. 77.
    Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P (2008) Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem Cell Biol 130:1147–1154PubMedGoogle Scholar
  78. 78.
    Dondossola E et al (2018) Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci Transl Med 10Google Scholar
  79. 79.
    Ilina O et al (2018) Intravital microscopy of collective invasion plasticity in breast cancer. Dis Model Mech 11Google Scholar
  80. 80.
    Patsialou A et al (2013) Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. IntraVital 2:e25294PubMedPubMedCentralGoogle Scholar
  81. 81.
    Le Dévédec SE et al (2011) Two-photon intravital multicolour imaging to study metastatic behaviour of cancer cells in vivo. Methods Mol Biol.  https://doi.org/10.1007/978-1-61779-207-6_22CrossRefPubMedGoogle Scholar
  82. 82.
    Koga S et al (2014) In vivo subcellular imaging of tumors in mouse models using a fluorophore-conjugated anti-carcinoembryonic antigen antibody in two-photon excitation microscopy. Cancer Sci 105:1299–1306PubMedPubMedCentralGoogle Scholar
  83. 83.
    Thomas G et al (2014) In vivo nonlinear spectral imaging as a tool to monitor early spectroscopic and metabolic changes in a murine cutaneous squamous cell carcinoma model. Biomed Opt Express 5:4281PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kantelhardt SR et al (2016) In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue. J Neurooncol 127:473–482PubMedGoogle Scholar
  85. 85.
    Lunt SJ, Gray C, Reyes-Aldasoro CC, Matcher SJ, Tozer GM (2010) Application of intravital microscopy in studies of tumor microcirculation. J Biomed Opt 15:011113PubMedGoogle Scholar
  86. 86.
    Bentolila NY, Barnhill RL, Lugassy C, Bentolila LA (2018) Intravital imaging of human melanoma cells in the mouse ear skin by two-photon excitation microscopy. In: Damoiseaux R, Hasson S (eds) BT—reporter gene assays: methods and protocols. Springer, New York, pp 223–232.  https://doi.org/10.1007/978-1-4939-7724-6_15
  87. 87.
    Alexander S, Weigelin B, Winkler F, Friedl P (2013) Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 25:659–671PubMedGoogle Scholar
  88. 88.
    Beerling E, Ritsma L, Vrisekoop N, Derksen PWB, van Rheenen J (2011) Intravital microscopy: new insights into metastasis of tumors. J Cell Sci 124:299–310PubMedPubMedCentralGoogle Scholar
  89. 89.
    Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ (2012) Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc 7:654–669PubMedPubMedCentralGoogle Scholar
  90. 90.
    Provenzano PP et al (2006) Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med 4Google Scholar
  91. 91.
    Tilbury K, Campagnola PJ (2015) Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect Med Chem 7:21–32Google Scholar
  92. 92.
    Horton NG et al (2013) In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 7:205–209PubMedCentralGoogle Scholar
  93. 93.
    Weigelin B, Bakker G-J, Friedl P (2012) Intravital third harmonic generation microscopy of collective melanoma cell invasion. IntraVital 1:32–43PubMedPubMedCentralGoogle Scholar
  94. 94.
    You S et al (2018) Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. Nat Commun 9Google Scholar
  95. 95.
    Wang T et al (2018) Three-photon imaging of mouse brain structure and function through the intact skull. Nat Methods 15:789–792PubMedPubMedCentralGoogle Scholar
  96. 96.
    Guesmi K et al (2018) Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light Sci Appl 7Google Scholar
  97. 97.
    Hwang JY et al (2011) Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications. Biomed Opt Express 2:356PubMedPubMedCentralGoogle Scholar
  98. 98.
    Cheng L-C et al (2012) Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning. Opt Express 20:8939PubMedGoogle Scholar
  99. 99.
    Rowlands CJ et al (2017) Wide-field three-photon excitation in biological samples. Light Sci Appl 6Google Scholar
  100. 100.
    Ducourthial G et al (2015) Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal. Sci Rep 5Google Scholar
  101. 101.
    Liang W, Hall G, Messerschmidt B, Li MJ, Li X (2017) Nonlinear optical endomicroscopy for label-free functional histology in vivo. Light Sci Appl 6Google Scholar
  102. 102.
    Kundrat MJ, Reinhall PG, Lee CM, Seibel EJ (2011) High performance open loop control of scanning with a small cylindrical cantilever beam. J Sound Vib 330:1762–1771PubMedPubMedCentralGoogle Scholar
  103. 103.
    Zhao Y, Nakamura H, Gordon RJ (2010) Development of a versatile two-photon endoscope for biological imaging. Biomed Opt Express 1:1159PubMedPubMedCentralGoogle Scholar
  104. 104.
    Blom H, Widengren J (2017) Stimulated emission depletion microscopy. Chem Rev 117:7377–7427PubMedGoogle Scholar
  105. 105.
    Sharma S et al (2012) Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomedicine Nanotechnol Biol Med.  https://doi.org/10.1016/j.nano.2011.09.015
  106. 106.
    Ilgen P et al (2014) STED super-resolution microscopy of clinical paraffin-embedded human rectal cancer tissue. PLoS One 9Google Scholar
  107. 107.
    Rönnlund D, Gad AKB, Blom H, Aspenström P, Widengren J (2013) Spatial organization of proteins in metastasizing cells. Cytom Part A 83:855–865Google Scholar
  108. 108.
    Rathje L-SZ et al (2014) Oncogenes induce a vimentin filament collapse mediated by HDAC6 that is linked to cell stiffness. Proc Natl Acad Sci 111:1515–1520PubMedGoogle Scholar
  109. 109.
    Creech MK, Wang J, Nan X, Gibbs SL (2017) Superresolution imaging of clinical formalin fixed paraffin embedded breast cancer with single molecule localization microscopy. Sci Rep 7Google Scholar
  110. 110.
    Wang M et al (2015) High-resolution rapid diagnostic imaging of whole prostate biopsies using video-rate fluorescence structured illumination microscopy. Cancer Res 75:4032–4041PubMedPubMedCentralGoogle Scholar
  111. 111.
    Wang J, Xu Y, Boppart SA (2017) Review of optical coherence tomography in oncology. J Biomed Opt 22:1PubMedGoogle Scholar
  112. 112.
    Iftimia N et al (2017) Handheld optical coherence tomography–reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins. J Biomed Opt 22:076006PubMedCentralGoogle Scholar
  113. 113.
    Lee M et al (2015) In vivo imaging of the tumor and its associated microenvironment using combined CARS/2-photon microscopy. IntraVital 4:e1055430PubMedPubMedCentralGoogle Scholar
  114. 114.
    Andresen, V. et al. High-Resolution Intravital Microscopy. PLoS One 7, (2012)Google Scholar
  115. 115.
    York AG et al (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9:749–754PubMedPubMedCentralGoogle Scholar
  116. 116.
    Ingaramo M et al (2014) Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc Natl Acad Sci 111:5254–5259PubMedGoogle Scholar
  117. 117.
    Tserevelakis GJ, Soliman D, Omar M, Ntziachristos V (2014) Hybrid multiphoton and optoacoustic microscope. Opt Lett 39:1819PubMedGoogle Scholar
  118. 118.
    Kellnberger S et al (2018) Optoacoustic microscopy at multiple discrete frequencies. Light Sci Appl 7:109PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Dimitrios Kapsokalyvas
    • 1
    • 2
  • Marc A. M. J. van Zandvoort
    • 1
    • 2
    Email author
  1. 1.School for Oncology and Developmental Biology GROW and School for Cardiovascular Diseases CARIMMaastricht UniversityMaastrichtThe Netherlands
  2. 2.Institut für Molekulare Kreislaufforschung, Universitätsklinikum AachenAachenGermany

Personalised recommendations