Advertisement

Optical and Optoacoustic Imaging

  • Joanna NappEmail author
  • Andrea Markus
  • Frauke AlvesEmail author
Chapter
  • 72 Downloads
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 216)

Abstract

The spatiotemporal determination of molecular events and cells is important for understanding disease processes, especially in oncology, and thus for the development of novel treatments. Equally important is the knowledge of the biodistribution, localization, and targeted accumulation of novel therapies as well as monitoring of tumor growth and therapeutic response. Optical imaging provides an ideal versatile platform for imaging of all these problems and questions.

Nomenclature

2D

Two-dimensional

3D

Three-dimensional

ACT

Adoptive T cell therapy

BLI

Bioluminescence imaging

BRET

Bioluminescence resonance energy transfer

CCD

Charged-coupled device

cRGD

Cyclic arginine–glycine–aspartic acid

CXCR4

CXC-Motiv-Chemokine receptor 4

DOX

Doxorubicin

DR5

Proapoptotic receptor death receptor 5

ECM

Extracellular matrix

EGFR

Epidermal growth factor receptor

EPR

Enhanced permeability and retention

ER

Endoplasmic reticulum

FGS

Fluorescence-guided surgery

FITC

Fluorescein isothiocyanate

FLIM

Fluorescence lifetime imaging

FLuc

Firefly luciferase

FRI

Fluorescence reflectance imaging

FTI

Fluorescence transillumination imaging

GFP

Green fluorescent protein

GLuc

Gaussia luciferase

GPCR

G protein-coupled receptor

hASCs

Human subcutaneous adipose tissue stem cells

HIF

Hypoxia-inducible factor

hMSCs

Human mesenchymal stem cells

ICG

Indo-cyanine green

LLC

Lewis lung cancer

MICAD

Molecular Imaging and Contrast Agent Database

MMPs

Matrix metallopeptidases

MRI

Magnetic resonance imaging

MSOT

Multispectral optoacoustic tomography

NFAT

Nuclear factor of activated T cells

NIR(F)

Near-infrared (fluorescence)

OAI

Optoacoustic imaging

OVA

Ovalbumin

PBLs

Peripheral blood lymphocytes

PCA

Protein fragment complementation assay

PDGFR

Platelet-derived growth factor receptor

PEG

Polyethylene glycol

PKA

Protein kinase A

PSA

Prostate-specific antigen

QY

Quantum yield

RFP

Red fluorescent protein

RLuc

Renilla luciferase

SLNs

Sentinel lymph node(s)

SNR

Signal-to-noise ratio

SPCD

Single-photon counting detector

SPR

Surface plasmon resonance

TILs

Tumor-infiltrating lymphocytes

TME

Tumor microenvironment

TNF

Tumor necrosis factor

TRAIL

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand

UV

Ultraviolet

VEGF

Vascular endothelial growth factor

Vluc

Vargula luciferase

References

  1. 1.
    Agarwal A, Huang SW, O’Donnell M, Day KC, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102:064701.  https://doi.org/10.1063/1.2777127CrossRefGoogle Scholar
  2. 2.
    Alander JT, Kaartinen I, Laakso A, Pätilä T, Spillmann T, Tuchin VV, Venermo M, Välisuo P (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:1–26.  https://doi.org/10.1155/2012/940585CrossRefGoogle Scholar
  3. 3.
    Allen AB, Gazit Z, Su S, Stevens HY, Guldberg RE (2014) In vivo bioluminescent tracking of mesenchymal stem cells within large hydrogel constructs. Tissue Eng Part C Methods 20:806–816.  https://doi.org/10.1089/ten.tec.2013.0587CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alves F, Dullin C, Napp J, Missbach-Guentner J, Jannasch K, Mathejczyk J, Pardo LA, Stühmer W, Tietze L-F (2009) Concept of a selective tumour therapy and its evaluation by near-infrared fluorescence imaging and flat-panel volume computed tomography in mice. Eur J Radiol 70:286–293.  https://doi.org/10.1016/j.ejrad.2009.01.048CrossRefPubMedGoogle Scholar
  5. 5.
    Ankersmit M, van Dam DA, van Rijswijk A-S, van den Heuvel B, Tuynman JB, Meijerink WJHJ (2017) Fluorescent imaging with indocyanine green during laparoscopic cholecystectomy in patients at increased risk of bile duct injury. Surg Innov 24:245–252.  https://doi.org/10.1177/1553350617690309CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ardeshirpour Y, Chernomordik V, Capala J, Hassan M, Zielinsky R, Griffiths G, Achilefu S, Smith P, Gandjbakhckhe A (2011) Using in-vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol Cancer Res Treat 10:549–560CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, Backer JM (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509.  https://doi.org/10.1038/nm1522CrossRefPubMedGoogle Scholar
  8. 8.
    Badr CE, Tannous BA (2011) Bioluminescence imaging: progress and applications. Trends Biotechnol 29:624–633.  https://doi.org/10.1016/j.tibtech.2011.06.010CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bai X, Yan Y, Coleman M, Wu G, Rabinovich B, Seidensticker M, Alt E (2011) Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging. Mol Imaging Biol 13:633–645.  https://doi.org/10.1007/s11307-010-0392-zCrossRefPubMedGoogle Scholar
  10. 10.
    Barnett EM, Zhang X, Maxwell D, Chang Q, Piwnica-Worms D (2009) Single-cell imaging of retinal ganglion cell apoptosis with a cell-penetrating, activatable peptide probe in an in vivo glaucoma model. Proc Natl Acad Sci U S A 106:9391–9396.  https://doi.org/10.1073/pnas.0812884106CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bell AG (1880) On the production and reproduction of sound by light. Am J Sci Series 3 20:305–324.  https://doi.org/10.2475/ajs.s3-20.118.305
  12. 12.
    Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 99:377–382.  https://doi.org/10.1073/pnas.012611099CrossRefPubMedGoogle Scholar
  13. 13.
    Brancaleon L, Durkin AJ, Tu JH, Menaker G, Fallon JD, Kollias N (2001) In vivo fluorescence spectroscopy of nonmelanoma skin cancer. Photochem Photobiol 73:178–183CrossRefPubMedGoogle Scholar
  14. 14.
    Brodl E, Winkler A, Macheroux P (2018) Molecular mechanisms of bacterial bioluminescence. Comput Struct Biotechnol J 16:551–564.  https://doi.org/10.1016/j.csbj.2018.11.003CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bullok KE, Maxwell D, Kesarwala AH, Gammon S, Prior JL, Snow M, Stanley S, Piwnica-Worms D (2007) Biochemical and in vivo characterization of a small, membrane-permeant, caspase-activatable far-red fluorescent peptide for imaging apoptosis. Biochemistry 46:4055–4065.  https://doi.org/10.1021/bi061959nCrossRefPubMedGoogle Scholar
  16. 16.
    Cai W, Sam Gambhir S, Chen X (2005) Multimodality tumor imaging targeting integrin alphavbeta3. Biotechniques 39:S14–S25.  https://doi.org/10.2144/000112091CrossRefPubMedGoogle Scholar
  17. 17.
    Carlsen H, Moskaug JØ, Fromm SH, Blomhoff R (2002) In vivo imaging of nf-κb activity. J Immunol 168:1441–1446.  https://doi.org/10.4049/jimmunol.168.3.1441CrossRefPubMedGoogle Scholar
  18. 18.
    Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS ONE 5:e12441.  https://doi.org/10.1371/journal.pone.0012441CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Conway JRW, Warren SC, Herrmann D, Murphy KJ, Cazet AS, Vennin C, Shearer RF, Killen MJ, Magenau A, Mélénec P, Pinese M, Nobis M, Zaratzian A, Boulghourjian A, Da Silva AM, Del Monte-Nieto G, Adam ASA, Harvey RP, Haigh JJ, Wang Y, Croucher DR, Sansom OJ, Pajic M, Caldon CE, Morton JP, Timpson P (2018) Intravital imaging to monitor therapeutic response in moving hypoxic regions resistant to PI3K pathway targeting in pancreatic cancer. Cell Rep 23:3312–3326.  https://doi.org/10.1016/j.celrep.2018.05.038CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cronin M, Akin AR, Collins SA, Meganck J, Kim J-B, Baban CK, Joyce SA, van Dam GM, Zhang N, van Sinderen D, O’Sullivan GC, Kasahara N, Gahan CG, Francis KP, Tangney M (2012) High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS ONE 7:e30940.  https://doi.org/10.1371/journal.pone.0030940CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    David S, Carmoy N, Resnier P, Denis C, Misery L, Pitard B, Benoit J-P, Passirani C, Montier T (2012) In vivo imaging of DNA lipid nanocapsules after systemic administration in a melanoma mouse model. Int J Pharm, Spec Issue: Drug Deliv Imaging Cancer 423:108–115.  https://doi.org/10.1016/j.ijpharm.2011.06.031CrossRefGoogle Scholar
  22. 22.
    Delank W, Khanavkar B, Nakhosteen JA, Stoll W (2000) A pilot study of autofluorescent endoscopy for the in vivo detection of laryngeal cancer. Laryngoscope 110:368–373.  https://doi.org/10.1097/00005537-200003000-00007CrossRefPubMedGoogle Scholar
  23. 23.
    Ding D, Guo W, Guo C, Sun J, Zheng N, Wang F, Yan M, Liu S (2017) MoO 3 − x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale 9:2020–2029.  https://doi.org/10.1039/C6NR09046JCrossRefPubMedGoogle Scholar
  24. 24.
    Ding S, Blue RE, Moorefield E, Yuan H, Lund PK (2017) Ex vivo and in vivo noninvasive imaging of epidermal growth factor receptor inhibition on colon tumorigenesis using activatable near-infrared fluorescent probes. Mol Imaging 16:1536012117729044.  https://doi.org/10.1177/1536012117729044CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dothager RS, Flentie K, Moss B, Pan M-H, Kesarwala A, Piwnica-Worms D (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol, Anal Biotechnol 20:45–53.  https://doi.org/10.1016/j.copbio.2009.01.007CrossRefGoogle Scholar
  26. 26.
    Edgington LE, Verdoes M, Bogyo M (2011) Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 15:798–805.  https://doi.org/10.1016/j.cbpa.2011.10.012CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Edinger M, Cao Y-A, Verneris MR, Bachmann MH, Contag CH, Negrin RS (2003) Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood 101:640–648.  https://doi.org/10.1182/blood-2002-06-1751CrossRefPubMedGoogle Scholar
  28. 28.
    Edwards WB, Akers WJ, Ye Y, Cheney PP, Bloch S, Xu B, Laforest R, Achilefu S (2009) Multimodal imaging of integrin receptor-positive tumors by bioluminescence, fluorescence, gamma scintigraphy, and single-photon emission computed tomography using a cyclic RGD peptide labeled with a near-infrared fluorescent dye and a radionuclide. Mol Imaging 8:101–110CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Eisenblätter M, Ehrchen J, Varga G, Sunderkötter C, Heindel W, Roth J, Bremer C, Wall A (2009) In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages. J Nucl Med 50:1676–1682.  https://doi.org/10.2967/jnumed.108.060707CrossRefPubMedGoogle Scholar
  30. 30.
    Foster AE, Kwon S, Ke S, Lu A, Eldin K, Sevick-Muraca E, Rooney CM (2008) In vivo fluorescent optical imaging of cytotoxic T lymphocyte migration using IRDye800CW near-infrared dye. Appl Opt 47:5944–5952CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634.  https://doi.org/10.1016/j.cbpa.2003.08.007CrossRefGoogle Scholar
  32. 32.
    Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP (2009) In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Cancer Res 69:7926–7934.  https://doi.org/10.1158/0008-5472.CAN-08-4900CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Georgakoudi I, Jacobson BC, Müller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS (2002) NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62:682–687PubMedGoogle Scholar
  34. 34.
    Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I (2016) Targeting of the P2X7 receptor in pancreatic cancer and stellate cells: Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer 139:2540–2552.  https://doi.org/10.1002/ijc.30380CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Grootendorst DJ, Fratila RM, Visscher M, Haken BT, van Wezel RJA, Rottenberg S, Steenbergen W, Manohar S, Ruers TJM (2013) Intra-operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion. J Biophotonics 6:493–504.  https://doi.org/10.1002/jbio.201200204CrossRefPubMedGoogle Scholar
  36. 36.
    Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the Sea. Annu Rev Mar Sci 2:443–493.  https://doi.org/10.1146/annurev-marine-120308-081028CrossRefGoogle Scholar
  37. 37.
    Hadjipanayis CG, Widhalm G, Stummer W (2015) What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas?: Neurosurgery 77:663–673.  https://doi.org/10.1227/NEU.0000000000000929
  38. 38.
    Han X, Lui H, McLean DI, Zeng H (2009) Near-infrared autofluorescence imaging of cutaneous melanins and human skin in vivo. J Biomed Opt 14:024017.  https://doi.org/10.1117/1.3103310CrossRefPubMedGoogle Scholar
  39. 39.
    Han X, Xu K, Taratula O, Farsad K (2019) Applications of nanoparticles in biomedical imaging. Nanoscale 11:799–819.  https://doi.org/10.1039/C8NR07769JCrossRefGoogle Scholar
  40. 40.
    Harrop GA (1919) The oxygen and carbon dioxide content of arterial and of venous blood in normal individuals and in patients with anemia and heart disease. J Exp Med 30:241–257CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hart LS, El-Deiry WS (2008) Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells. J Clin Oncol 26:2901–2910.  https://doi.org/10.1200/JCO.2008.16.9573CrossRefPubMedGoogle Scholar
  42. 42.
    Huang Z, Zheng W, Xie S, Chen R, Zeng H, McLean DI, Lui H (2004) Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue. Int J Oncol 24:59–63PubMedGoogle Scholar
  43. 43.
    Iwano S, Sugiyama M, Hama H, Watakabe A, Hasegawa N, Kuchimaru T, Tanaka KZ, Takahashi M, Ishida Y, Hata J, Shimozono S, Namiki K, Fukano T, Kiyama M, Okano H, Kizaka-Kondoh S, McHugh TJ, Yamamori T, Hioki H, Maki S, Miyawaki A (2018) Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359:935–939.  https://doi.org/10.1126/science.aaq1067CrossRefGoogle Scholar
  44. 44.
    Jansen K, van der Steen AFW, Wu M, van Beusekom HMM, Springeling G, Li X, Zhou Q, Shung KK, de Kleijn DP, van Soest G (2014) Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. JBO 19:026006.  https://doi.org/10.1117/1.JBO.19.2.026006CrossRefGoogle Scholar
  45. 45.
    Jayanthi JL, Subhash N, Stephen M, Philip EK, Beena VT (2011) Comparative evaluation of the diagnostic performance of autofluorescence and diffuse reflectance in oral cancer detection: a clinical study. J Biophotonics 4:696–706.  https://doi.org/10.1002/jbio.201100037CrossRefPubMedGoogle Scholar
  46. 46.
    Jenkins DE, Hornig YS, Oei Y, Dusich J, Purchio T (2005) Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivodetection of mammary tumors and multiple metastases in immune deficient mice. Breast Cancer Res 7:R444.  https://doi.org/10.1186/bcr1026CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jiang T, Sun W, Zhu Q, Burns NA, Khan SA, Mo R, Gu Z (2015) Furin-mediated sequential delivery of anticancer cytokine and small-molecule drug shuttled by Graphene. Adv Mater 27:1021–1028.  https://doi.org/10.1002/adma.201404498CrossRefGoogle Scholar
  48. 48.
    Jost SC, Collins L, Travers S, Piwnica-Worms D, Garbow JR (2009) Measuring Brain Tumor Growth: A Combined BLI/MRI Strategy. Mol Imaging 8:245–253CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL, Baek S-H, Jeon YH, Jeong SY, Lee S-W, Lee J, Ahn B-C (2017) In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging [WWW Document]. Stem Cells Int.  https://doi.org/10.1155/2017/8085637
  50. 50.
    Kidd S, Spaeth E, Dembinski JL, Dietrich M, Watson K, Klopp A, Battula L, Weil M, Andreeff M, Marini FC (2009) Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescence imaging. Stem Cells 27:2614–2623.  https://doi.org/10.1002/stem.187CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kim J-B, Urban K, Cochran E, Lee S, Ang A, Rice B, Bata A, Campbell K, Coffee R, Gorodinsky A, Lu Z, Zhou H, Kishimoto TK, Lassota P (2010) Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS ONE 5:e9364.  https://doi.org/10.1371/journal.pone.0009364CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4:688–694.  https://doi.org/10.1038/nnano.2009.231CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kleinovink JW, Mezzanotte L, Zambito G, Fransen MF, Cruz LJ, Verbeek JS, Chan A, Ossendorp F, Löwik C (2019) A dual-color bioluminescence reporter mouse for simultaneous in vivo imaging of T cell localization and function. Front. Immunol. 9.  https://doi.org/10.3389/fimmu.2018.03097
  54. 54.
    Kobayashi H, Ogawa M, Kosaka N, Choyke PL, Urano Y (2009) Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine (Lond) 4:411–419.  https://doi.org/10.2217/nnm.09.15CrossRefGoogle Scholar
  55. 55.
    Kojima R, Takakura H, Ozawa T, Tada Y, Nagano T, Urano Y (2013) Rational design and development of near-infrared-emitting firefly luciferins available in vivo. Angew Chem Int Ed 52:1175–1179.  https://doi.org/10.1002/anie.201205151CrossRefGoogle Scholar
  56. 56.
    Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40:113301.  https://doi.org/10.1118/1.4824317CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30:507.  https://doi.org/10.1364/OL.30.000507CrossRefPubMedGoogle Scholar
  58. 58.
    Kuchimaru T, Kadonosono T, Tanaka S, Ushiki T, Hiraoka M, Kizaka-Kondoh S (2010) In vivo imaging of HIF-active tumors by an oxygen-dependent degradation protein probe with an interchangeable labeling system. PLoS One 5.  https://doi.org/10.1371/journal.pone.0015736
  59. 59.
    Lake MC, Aboagye EO (2014) Luciferase fragment complementation imaging in preclinical cancer studies. Oncoscience 1:310–325.  https://doi.org/10.18632/oncoscience.45
  60. 60.
    Lavaud J, Henry M, Coll JL, Josserand V (2017) Exploration of melanoma metastases in mice brains using endogenous contrast photoacoustic imaging. Int J Pharm, SFNano 2016 meeting 532:704–709.  https://doi.org/10.1016/j.ijpharm.2017.08.104
  61. 61.
    Leblond F, Davis SC, Valdés PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B 98:77–94. https://doi.org/10.1016/j.jphotobiol.2009.11.007
  62. 62.
    Lee C-M, Jang D, Cheong S-J, Jeong M-H, Kim E-M, Kim DW, Lim ST, Sohn M-H, Jeong H-J (2012) Optical imaging of MMP expression and cancer progression in an inflammation-induced colon cancer model. Int J Cancer 131:1846–1853.  https://doi.org/10.1002/ijc.27451CrossRefPubMedGoogle Scholar
  63. 63.
    Lee S, Choi KY, Chung H, Ryu JH, Lee A, Koo H, Youn I-C, Park JH, Kim I-S, Kim SY, Chen X, Jeong SY, Kwon IC, Kim K, Choi K (2011) Real time, high resolution video imaging of apoptosis in single cells with a polymeric nanoprobe. Bioconjug Chem 22:125–131.  https://doi.org/10.1021/bc1004119CrossRefPubMedGoogle Scholar
  64. 64.
    Li L, Du Y, Chen X, Tian J (2018) Fluorescence molecular imaging and tomography of matrix metalloproteinase-activatable near-infrared fluorescence probe and image-guided orthotopic glioma resection. Mol Imaging Biol 20:930–939.  https://doi.org/10.1007/s11307-017-1158-7CrossRefPubMedGoogle Scholar
  65. 65.
    Li M, Oh J, Xie X, Ku G, Wang W, Li C, Lungu G, Stoica G, Wang LV (2008) Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc IEEE 96:481–489.  https://doi.org/10.1109/JPROC.2007.913515CrossRefGoogle Scholar
  66. 66.
    Li M, Tang Y, Yao J (2018) Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics 10:65–73.  https://doi.org/10.1016/j.pacs.2018.05.001CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Li W, Chen X (2015) Gold nanoparticles for photoacoustic imaging. Nanomedicine 10:299–320.  https://doi.org/10.2217/nnm.14.169CrossRefGoogle Scholar
  68. 68.
    Li X, Schumann C, Albarqi HA, Lee CJ, Alani AWG, Bracha S, Milovancev M, Taratula Olena, Taratula Oleh (2018) A tumor-activatable theranostic nanomedicine platform for nir fluorescence-guided surgery and combinatorial phototherapy. Theranostics 8:767–784.  https://doi.org/10.7150/thno.21209CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lim YT, Cho MY, Noh Y-W, Chung JW, Chung BH (2009) Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy. Nanotechnology 20:475102.  https://doi.org/10.1088/0957-4484/20/47/475102CrossRefPubMedGoogle Scholar
  70. 70.
    Liu Z, Liu Shuanglong, Niu G, Wang F, Liu Shuang, Chen X (2010) Optical imaging of integrin alphavbeta3 expression with near-infrared fluorescent RGD dimer with tetra(ethylene glycol) linkers. Mol Imaging 9:21–29CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Loja MN, Luo Z, Farwell DG, Luu QC, Donald PJ, FRCSc, Amott D, Truong AQ, Gandour-Edwards RF, Nitin N (2013) Optical molecular imaging detects changes in extracellular pH with the development of head and neck cancer. Int J Cancer 132:1613–1623. https://doi.org/10.1002/ijc.27837
  72. 72.
    Lopez A, Liao JC (2014) Emerging endoscopic imaging technologies for bladder cancer detection. Curr Urol Rep 15:406.  https://doi.org/10.1007/s11934-014-0406-5CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lyons SK, Lim E, Clermont AO, Dusich J, Zhu L, Campbell KD, Coffee RJ, Grass DS, Hunter J, Purchio T, Jenkins D (2006) noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res 66:4701–4707.  https://doi.org/10.1158/0008-5472.CAN-05-3598CrossRefPubMedGoogle Scholar
  74. 74.
    Lyons SK, Meuwissen R, Krimpenfort P, Berns A (2003) The generation of a conditional reporter that enables bioluminescence imaging of Cre/loxP-dependent tumorigenesis in mice. Cancer Res 63:7042–7046PubMedGoogle Scholar
  75. 75.
    Maguire CA, Bovenberg MS, Crommentuijn MH, Niers JM, Kerami M, Teng J, Sena-Esteves M, Badr CE, Tannous BA (2013) Triple bioluminescence imaging for in vivo monitoring of cellular processes. Mol Therapy—Nucleic Acids 2.  https://doi.org/10.1038/mtna.2013.25
  76. 76.
    Mahmood U, Weissleder R (2003) Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2:489–496Google Scholar
  77. 77.
    Mallidi S, Larson T, Tam J, Joshi PP, Karpiouk A, Sokolov K, Emelianov S (2009) Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer. Nano Lett 9:2825–2831.  https://doi.org/10.1021/nl802929uCrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T (2015) Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 5:289–301.  https://doi.org/10.7150/thno.10155CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Manohar S, Vaartjes SE, van Hespen JCG, Klaase JM, van den Engh FM, Steenbergen W, van Leeuwen TG (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15:12277–12285.  https://doi.org/10.1364/oe.15.012277CrossRefPubMedGoogle Scholar
  80. 80.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444.  https://doi.org/10.1038/nature07205CrossRefPubMedGoogle Scholar
  81. 81.
    Mathejczyk JE, Pauli J, Dullin C, Napp J, Tietze L-F, Kessler H, Resch-Genger U, Alves F (2011) Spectroscopically well-characterized RGD optical probe as a prerequisite for lifetime-gated tumor imaging. Mol Imaging 10:469–480CrossRefPubMedGoogle Scholar
  82. 82.
    Mathejczyk JE, Pauli J, Dullin C, Resch-Genger U, Alves F, Napp J (2012) High-sensitivity detection of breast tumors in vivo by use of a pH-sensitive near-infrared fluorescence probe. J Biomed Opt 17:076028.  https://doi.org/10.1117/1.JBO.17.7.076028CrossRefPubMedGoogle Scholar
  83. 83.
    Maxwell D, Chang Q, Zhang X, Barnett EM, Piwnica-Worms D (2009) An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging. Bioconjug Chem 20:702–709.  https://doi.org/10.1021/bc800516nCrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123–142CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Mezzanotte L, Que I, Kaijzel E, Branchini B, Roda A, Löwik C (2011) Sensitive dual color in vivo bioluminescence imaging using a new red codon optimized firefly luciferase and a green click beetle luciferase. PLoS ONE 6:e19277.  https://doi.org/10.1371/journal.pone.0019277CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Mieog JSD, Vahrmeijer AL, Hutteman M, van der Vorst JR, Drijfhout van Hooff M, Dijkstra J, Kuppen PJK, Keijzer R, Kaijzel EL, Que I, van de Velde CJH, Löwik CWGM (2010) Novel intraoperative near-infrared fluorescence camera system for optical image-guided cancer surgery. Mol Imaging 9:223–231CrossRefPubMedGoogle Scholar
  87. 87.
    Min J-J, Nguyen VH, Kim H-J, Hong Y, Choy HE (2008) Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 3:629–636.  https://doi.org/10.1038/nprot.2008.32CrossRefPubMedGoogle Scholar
  88. 88.
    Mohs AM, Mancini MC, Singhal S, Provenzale JM, Leyland-Jones B, Wang MD, Nie S (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82:9058–9065.  https://doi.org/10.1021/ac102058kCrossRefPubMedGoogle Scholar
  89. 89.
    Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. In: Biotechnology annual review. Elsevier, pp. 227–256.  https://doi.org/10.1016/S1387-2656(05)11007-2
  90. 90.
    Montet X, Figueiredo J-L, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758.  https://doi.org/10.1148/radiol.2423052065CrossRefPubMedGoogle Scholar
  91. 91.
    Moriichi K, Fujiya M, Okumura T (2016) The efficacy of autofluorescence imaging in the diagnosis of colorectal diseases. Clin J Gastroenterol 9:175–183.  https://doi.org/10.1007/s12328-016-0658-3CrossRefPubMedGoogle Scholar
  92. 92.
    Na I-K, Markley JC, Tsai JJ, Yim NL, Beattie BJ, Klose AD, Holland AM, Ghosh A, Rao UK, Stephan MT, Serganova I, Santos EB, Brentjens RJ, Blasberg RG, Sadelain M, van den Brink MRM (2010) Concurrent visualization of trafficking, expansion, and activation of T lymphocytes and T-cell precursors in vivo. Blood 116:e18–e25.  https://doi.org/10.1182/blood-2009-12-259432CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Napp J, Behnke T, Fischer L, Würth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Schäferling M (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83:9039–9046.  https://doi.org/10.1021/ac201870bCrossRefPubMedGoogle Scholar
  94. 94.
    Napp J, Dullin C, Müller F, Uhland K, Petri JB, van de Locht A, Steinmetzer T, Alves F (2010) Time-domain in vivo near infrared fluorescence imaging for evaluation of matriptase as a potential target for the development of novel, inhibitor-based tumor therapies. Int J Cancer 127:1958–1974.  https://doi.org/10.1002/ijc.25405CrossRefPubMedGoogle Scholar
  95. 95.
    Napp J, Stammes MA, Claussen J, Prevoo HAJM, Sier CFM, Hoeben FJM, Robillard MS, Vahrmeijer AL, Devling T, Chan AB, de Geus-Oei L-F, Alves F (2018) Fluorescence- and multispectral optoacoustic imaging for an optimized detection of deeply located tumors in an orthotopic mouse model of pancreatic carcinoma. Int J Cancer 142:2118–2129.  https://doi.org/10.1002/ijc.31236CrossRefPubMedGoogle Scholar
  96. 96.
    Niedre MJ, de Kleine RH, Aikawa E, Kirsch DG, Weissleder R, Ntziachristos V (2008) Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc Natl Acad Sci USA 105:19126–19131.  https://doi.org/10.1073/pnas.0804798105CrossRefPubMedGoogle Scholar
  97. 97.
    Niesner RA, Hauser AE (2011) Recent advances in dynamic intravital multi-photon microscopy. Cytometry Part A 79A:789–798.  https://doi.org/10.1002/cyto.a.21140CrossRefGoogle Scholar
  98. 98.
    Nishihara R, Paulmurugan R, Nakajima T, Yamamoto E, Natarajan A, Afjei R, Hiruta Y, Iwasawa N, Nishiyama S, Citterio D, Sato M, Kim SB, Suzuki K (2019) Highly bright and stable NIR-BRET with blue-shifted coelenterazine derivatives for deep-tissue imaging of molecular events in vivo. Theranostics 9:2646–2661.  https://doi.org/10.7150/thno.32219CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Niwa K, Ichino Y, Kumata S, Nakajima Y, Hiraishi Y, Kato D, Viviani VR, Ohmiya Y (2010) Quantum yields and kinetics of the firefly bioluminescence reaction of beetle luciferases. Photochem Photobiol 86:1046–1049.  https://doi.org/10.1111/j.1751-1097.2010.00777.xCrossRefPubMedGoogle Scholar
  100. 100.
    Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005a) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313.  https://doi.org/10.1038/nbt1074
  101. 101.
    Ntziachristos V, Turner G, Dunham J, Windsor S, Soubret A, Ripoll J, Shih HA (2005b) Planar fluorescence imaging using normalized data. J Biomed Opt 10:064007.  https://doi.org/10.1117/1.2136148
  102. 102.
    Oh J-T, Li M-L, Zhang HF, Maslov K, Stoica G, Wang LV (2006) Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. J Biomed Opt 11:034032.  https://doi.org/10.1117/1.2210907CrossRefGoogle Scholar
  103. 103.
    Okumura K, Yoshida K, Yoshioka K, Aki S, Yoneda N, Inoue D, Kitao A, Ogi T, Kozaka K, Minami T, Koda W, Kobayashi S, Takuwa Y, Gabata T (2018) Photoacoustic imaging of tumour vascular permeability with indocyanine green in a mouse model. Eur Radiol Exp 2:5. https://doi.org/10.1186/s41747-018-0036-7
  104. 104.
    Ozawa T, Yoshimura H, Kim SB (2013) Advances in fluorescence and bioluminescence imaging. Anal Chem 85:590–609.  https://doi.org/10.1021/ac3031724CrossRefPubMedGoogle Scholar
  105. 105.
    Pandey RK, James NS, Chen Y, Missert J, Sajjad M (2010) Bifunctional agents for imaging and therapy. Methods Mol Biol 635:223–259.  https://doi.org/10.1007/978-1-60761-697-9_16CrossRefPubMedGoogle Scholar
  106. 106.
    Perica K, Varela JC, Oelke M, Schneck J (2015) Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J 6.  https://doi.org/10.5041/RMMJ.10179
  107. 107.
    Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A (2003) Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res 63:1936–1942PubMedGoogle Scholar
  108. 108.
    Pichorner A, Sack U, Kobelt D, Kelch I, Arlt F, Smith J, Walther W, Schlag PM, Stein U (2012) In vivo imaging of colorectal cancer growth and metastasis by targeting MACC1 with shRNA in xenografted mice. Clin Exp Metastasis 29:573–583.  https://doi.org/10.1007/s10585-012-9472-6CrossRefPubMedGoogle Scholar
  109. 109.
    Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147:983–991.  https://doi.org/10.1016/j.cell.2011.11.004CrossRefGoogle Scholar
  110. 110.
    Porcu EP, Salis A, Gavini E, Rassu G, Maestri M, Giunchedi P (2016) Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv 34:768–789.  https://doi.org/10.1016/j.biotechadv.2016.04.001CrossRefPubMedGoogle Scholar
  111. 111.
    Rauch D, Gross S, Harding J, Niewiesk S, Lairmore M, Piwnica-Worms D, Ratner L (2009) Imaging spontaneous tumorigenesis: inflammation precedes development of peripheral NK tumors. Blood 113:1493–1500.  https://doi.org/10.1182/blood-2008-07-166462CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood J [WWW Document], n.d. http://www.bloodjournal.org/content/101/2/640.long. Accessed 23 May 2019)
  113. 113.
    Saravanakumar G, Min KH, Min DS, Kim AY, Lee C-M, Cho YW, Lee SC, Kim K, Jeong SY, Park K, Park JH, Kwon IC (2009) Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution. J Control Release 140:210–217.  https://doi.org/10.1016/j.jconrel.2009.06.015CrossRefPubMedGoogle Scholar
  114. 114.
    Sarraf-Yazdi S, Mi J, Dewhirst MW, Clary BM (2004) Use of in vivo bioluminescence imaging to predict hepatic tumor burden in mice. J Surg Res 120:249–255.  https://doi.org/10.1016/j.jss.2004.03.013CrossRefPubMedGoogle Scholar
  115. 115.
    Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231.  https://doi.org/10.1146/annurev-med-070910-083323CrossRefGoogle Scholar
  116. 116.
    Shah K, Tung C-H, Yang K, Weissleder R, Breakefield XO (2004) Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64:3236–3242CrossRefPubMedGoogle Scholar
  117. 117.
    Shao X, Zheng W, Huang Z (2011) In vivo diagnosis of colonic precancer and cancer using near-infrared autofluorescence spectroscopy and biochemical modeling. J Biomed Opt 16:067005.  https://doi.org/10.1117/1.3589099CrossRefPubMedGoogle Scholar
  118. 118.
    Siphanto RI, Thumma KK, Kolkman RGM, van Leeuwen TG, de Mul FFM, van Neck JW, van Adrichem LNA, Steenbergen W (2005) Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis. Opt Express 13:89–95.  https://doi.org/10.1364/opex.13.000089CrossRefPubMedGoogle Scholar
  119. 119.
    Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4:710–711.  https://doi.org/10.1038/nnano.2009.326CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Smith BA, Xiao S, Wolter W, Wheeler J, Suckow MA, Smith BD (2011) In vivo targeting of cell death using a synthetic fluorescent molecular probe. Apoptosis 16:722–731.  https://doi.org/10.1007/s10495-011-0601-5CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Staley J, Grogan P, Samadi AK, Cui H, Cohen MS, Yang X (2010) Growth of melanoma brain tumors monitored by photoacoustic microscopy. J Biomed Opt 15:040510.  https://doi.org/10.1117/1.3478309CrossRefPubMedGoogle Scholar
  122. 122.
    Stathopoulos GT, Zhu Z, Everhart MB, Kalomenidis I, Lawson WE, Bilaceroglu S, Peterson TE, Mitchell D, Yull FE, Light RW, Blackwell TS (2006) Nuclear factor-kappaB affects tumor progression in a mouse model of malignant pleural effusion. Am J Respir Cell Mol Biol 34:142–150.  https://doi.org/10.1165/rcmb.2005-0130OCCrossRefPubMedGoogle Scholar
  123. 123.
    Stefan E, Aquin S, Berger N, Landry CR, Nyfeler B, Bouvier M, Michnick SW (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase a activities in vivo. PNAS 104:16916–16921.  https://doi.org/10.1073/pnas.0704257104CrossRefPubMedGoogle Scholar
  124. 124.
    Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, Sardella TCP, Claussen J, Poeppel TD, Bachmann HS, Roesch A, Griewank K, Schadendorf D, Gunzer M, Klode J (2015) Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Trans Med 7:317ra199–317ra199.  https://doi.org/10.1126/scitranslmed.aad1278
  125. 125.
    Strijkers GJ, Kluza E, Van Tilborg GAF, van der Schaft DWJ, Griffioen AW, Mulder WJM, Nicolay K (2010) Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 13:161–173.  https://doi.org/10.1007/s10456-010-9165-1CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Stuker F, Ripoll J, Rudin M (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3:229–274.  https://doi.org/10.3390/pharmaceutics3020229CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Sun Z, Zhao Y, Li Z, Cui H, Zhou Y, Li W, Tao W, Zhang H, Wang H, Chu PK, Yu X-F (2017) TiL4-coordinated black phosphorus quantum dots as an efficient contrast agent for in vivo photoacoustic imaging of cancer. Small 13:1602896.  https://doi.org/10.1002/smll.201602896CrossRefGoogle Scholar
  128. 128.
    Suzuki K, Kimura T, Shinoda H, Bai G, Daniels MJ, Arai Y, Nakano M, Nagai T (2016) Five colour variants of bright luminescent protein for real-time multicolour bioimaging. Nat Commun 7:13718.  https://doi.org/10.1038/ncomms13718CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Swirski FK, Berger CR, Figueiredo J-L, Mempel TR, von Andrian UH, Pittet MJ, Weissleder R (2007) A near-infrared cell tracker reagent for multiscopic in vivo imaging and quantification of leukocyte immune responses. PLoS ONE 2:e1075.  https://doi.org/10.1371/journal.pone.0001075CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Szyska M, Herda S, Althoff S, Heimann A, Russ J, D’Abundo D, Dang TM, Durieux I, Dörken B, Blankenstein T, Na I-K (2018) A transgenic dual-luciferase reporter mouse for longitudinal and functional monitoring of T Cells in vivo. Cancer Immunol Res 6:110–120.  https://doi.org/10.1158/2326-6066.CIR-17-0256CrossRefPubMedGoogle Scholar
  131. 131.
    Takai A, Nakano M, Saito K, Haruno R, Watanabe TM, Ohyanagi T, Jin T, Okada Y, Nagai T (2015) Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging. PNAS 112:4352–4356.  https://doi.org/10.1073/pnas.1418468112CrossRefPubMedGoogle Scholar
  132. 132.
    Themelis G, Yoo JS, Soh K-S, Schulz R, Ntziachristos V (2009) Real-time intraoperative fluorescence imaging system using light-absorption correction. J Biomed Opt 14:064012.  https://doi.org/10.1117/1.3259362CrossRefPubMedGoogle Scholar
  133. 133.
    Uhrbom L, Nerio E, Holland EC (2004) Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat Med 10:1257.  https://doi.org/10.1038/nm1120CrossRefPubMedGoogle Scholar
  134. 134.
    Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17.  https://doi.org/10.3171/2011.2.JNS101451CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Valluru KS, Willmann JK (2016) Clinical photoacoustic imaging of cancer. Ultrasonography 35:267–280.  https://doi.org/10.14366/usg.16035
  136. 136.
    van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJG, van der Zee AGJ, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315–1319.  https://doi.org/10.1038/nm.2472CrossRefGoogle Scholar
  137. 137.
    van der Horst G, van Asten JJ, Figdor A, van den Hoogen C, Cheung H, Bevers RFM, Pelger RCM, van der Pluijm G (2011) Real-time cancer cell tracking by bioluminescence in a preclinical model of human bladder cancer growth and metastasis. Eur Urol 60:337–343.  https://doi.org/10.1016/j.eururo.2011.05.005CrossRefPubMedGoogle Scholar
  138. 138.
    Vangestel C, Peeters M, Mees G, Oltenfreiter R, Boersma HH, Elsinga PH, Reutelingsperger C, Van Damme N, De Spiegeleer B, Van de Wiele C (2011) In vivo imaging of apoptosis in oncology: an update. Mol Imaging 10:340–358.  https://doi.org/10.2310/7290.2010.00058CrossRefPubMedGoogle Scholar
  139. 139.
    Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239.  https://doi.org/10.1007/s10555-007-9055-1CrossRefGoogle Scholar
  140. 140.
    von Burstin J, Eser S, Seidler B, Meining A, Bajbouj M, Mages J, Lang R, Kind AJ, Schnieke AE, Schmid RM, Schneider G, Saur D (2008) Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. Int J Cancer 123:2138–2147.  https://doi.org/10.1002/ijc.23780CrossRefGoogle Scholar
  141. 141.
    Wang X, Xie X, Ku G, Wang LV, Stoica G (2006) Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. JBO 11:024015.  https://doi.org/10.1117/1.2192804CrossRefGoogle Scholar
  142. 142.
    Wang Y, Lin T, Zhang W, Jiang Y, Jin H, He H, Yang VC, Chen Y, Huang Y (2015) A Prodrug-type, MMP-2-targeting nanoprobe for tumor detection and imaging. Theranostics 5:787–795.  https://doi.org/10.7150/thno.11139CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13:639–650.  https://doi.org/10.1038/nmeth.3929CrossRefGoogle Scholar
  144. 144.
    Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316.  https://doi.org/10.1038/86684CrossRefPubMedGoogle Scholar
  145. 145.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589.  https://doi.org/10.1038/nature06917CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Woolfenden S, Zhu H, Charest A (2009) A Cre/LoxP conditional luciferase reporter transgenic mouse for bioluminescence monitoring of tumorigenesis. Genesis 47:659–666.  https://doi.org/10.1002/dvg.20545
  147. 147.
    Wu T, Qu J, Cheung T-H, Lo K, Yu M-Y (2003) Preliminary study of detecting neoplastic growths in vivo with real time calibrated autofluorescence imaging. Opt Express 11:291–298.  https://doi.org/10.1364/oe.11.000291CrossRefPubMedGoogle Scholar
  148. 148.
    Xu M, Wang LV n.d. Photoacoustic imaging in biomedicine. Rev Sci Instrum 23Google Scholar
  149. 149.
    Yang Y, Zhang Y, Hong H, Liu G, Leigh BR, Cai W (2011) In vivo near-infrared fluorescence imaging of CD105 expression during tumor angiogenesis. Eur J Nucl Med Mol Imaging 38:2066–2076.  https://doi.org/10.1007/s00259-011-1886-xCrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Yeh H-W, Karmach O, Ji A, Carter D, Martins-Green MM, Ai H (2017) Red-shifted luciferase-luciferin pairs for enhanced bioluminescence imaging. Nat Methods 14:971–974.  https://doi.org/10.1038/nmeth.4400CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Zhang HF, Maslov K, Stoica G, Wang LV (2006) Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol 24:848–851.  https://doi.org/10.1038/nbt1220CrossRefPubMedGoogle Scholar
  152. 152.
    Zhang L, Lee KC, Bhojani MS, Khan AP, Shilman A, Holland EC, Ross BD, Rehemtulla A (2007) Molecular imaging of Akt kinase activity. Nat Med 13:1114–1119.  https://doi.org/10.1038/nm1608CrossRefPubMedGoogle Scholar
  153. 153.
    Zheng X, Wang X, Mao H, Wu W, Liu B, Jiang X (2015) Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat Commun 6:5834.  https://doi.org/10.1038/ncomms6834CrossRefPubMedGoogle Scholar
  154. 154.
    Zhou L, Wang W, Dicker DT, Humphreys RC, El-Deiry WS (2011) Prediction of proapoptotic anticancer therapeutic response in vivo based on cell death visualization and TRAIL death ligand-receptor interaction. Cancer Biol Ther 12:335–348.  https://doi.org/10.4161/cbt.12.4.17174CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Image-Guided Nanotherapy and Diagnostic (IND)Institute of Diagnostic and Interventional Radiology, University Medical Center Goettingen (UMG)GoettingenGermany
  2. 2.Translational Molecular ImagingMax-Planck-Institute for Experimental MedicineGoettingenGermany
  3. 3.Translational Molecular ImagingInstitute of Diagnostic and Interventional Radiology, Clinic of Hematology and Medical Oncology, University Medical Center Goettingen (UMG)GoettingenGermany
  4. 4.Max-Planck-Institute for Experimental MedicineGoettingenGermany

Personalised recommendations