Lambayeque Paleodiet and Nutrition: A Diachronic Analysis

  • Bethany L. Turner
  • Haagen D. Klaus
Part of the Bioarchaeology and Social Theory book series (BST)


This chapter places the paleopathological and isotopic results described in the previous chapter in a larger interpretive context. Here, we place our isotopic results in further comparative context, using published reference values for an array of edible animal and plant resources from both terrestrial and aquatic contexts, and employ multivariable statistical analyses to infer diet composition over time and within contemporaneous groups. We then frame our human isotope results and the diet trends inferred from them within the results of our dental paleopathological analysis and previously published paleopathology research on Lambayeque and other north-coast archaeological human remains. Of particular interest in this chapter is the comparison of pre-Hispanic and Spanish Colonial periods, and Early/Middle Colonial versus Middle/Late Colonial periods, which provides significant insights into indigenous lived experience over the course of the Colonial era.


Animal protein Maize Marine foods Isotopic “menus” Feasts Chicha Age distribution Stress 


  1. Armelagos, G. J., Goodman, A. H., Harper, K. N., & Blakey, M. L. (2009). Enamel hypoplasia and early mortality: Bioarchaeological support for the Barker hypothesis. Evolutionary Anthropology, 18, 261–271.CrossRefGoogle Scholar
  2. Blakely, M. L., & Armelagos, G. J. (1985). Deciduous enamel defects in prehistoric Americans from Dickson Mounds: Prenatal and postnatal stress. American Journal of Physical Anthropology, 66, 371–380.CrossRefGoogle Scholar
  3. Buikstra, J. E., & Cook, D. C. (1980). Paleopathology – an American account. Annual Review of Anthropology, 9, 433–470.CrossRefGoogle Scholar
  4. Coe, S. D. (1994). America’s first cuisines. Austin: University of Texas Press.Google Scholar
  5. Cuéllar, A. M. (2013). The archaeology of food and social inequality in the Andes. Journal of Archaeological Research, 21, 123–174.Google Scholar
  6. Cutright, R. E. (2011). Comida, familia e imperio: relacionando cambios políticos y domésticos en la Periferia de Jequetepeque/Food, Family, and Empire: Relating Political and Domestic Change in the Jequetepeque Hinterland. In R. E. Cutright, E. López-Hurtado, & A. J. Martín (Eds.), Perspectivas comparativas sobre la Arqueología de la costa sudamericana/ Comparative Perspectives on the Archaeology of Coastal South America (pp. 27–44). Pittsburgh: Center for Comparative Archaeology, University of Pittsburgh.Google Scholar
  7. Cutright, R. E. (2014). Eating empire in the Jequetepeque: A local view of Chimú expansion on the north coast of Peru. Latin American Antiquity, 26(1), 64–86.Google Scholar
  8. Duday, H. (2009). The archaeology of the dead: Lectures in archaeothanatology. Oxford, UK: Oxbow Books.CrossRefGoogle Scholar
  9. Dupras, T. L., & Schwarcz, H. P. (2001). Strangers in a strange land: Stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Science, 28(11), 1199–1208.CrossRefGoogle Scholar
  10. Finucane, B., Agurto, P. M., & Isbell, W. H. (2006). Human and animal diet at Conchopata, Peru: Stable isotope evidence for maize agriculture and animal management practices during the middle horizon. Journal of Archaeological Science, 33, 1766–1776.Google Scholar
  11. Froehle, A. W., Kellner, C. M., & Schoeninger, M. J. (2012). Multivariate carbon and nitrogen stable isotope model for the reconstruction of prehistoric human diet. American Journal of Physical Anthropology, 147(3), 352–369.Google Scholar
  12. Fuller, B. T., Fuller, J. L., Sage, N. E., Harris, D. A., O’Connell, T. C., & Hedges, R. E. M. (2005). Nitrogen balance and δ15N: Why you’re not what you eat during nutritional stress. Rapid Communications in Mass Spectrometry, 19, 2497–2506.Google Scholar
  13. Gagnon, C. M., Fred, C., Andrus, T., Ida, J., & Richardson, N. (2015). Local water source variation and experimental Chicha de Maíz brewing: Implications for interpreting human hydroxyapatite δ18O in the Andes. Journal of Archaeological Science: Reports, 4, 174–181.Google Scholar
  14. Garcilaso de la Vega, I. (1966 [1609]). Royal commentaries of the Incas and general history of Peru: Harold V. In Livermore, trans. Austin: University of Texas Press.Google Scholar
  15. Garland, C. J. (2014). Biocultural consequences of Spanish contact in the Lambayeque Valley region of northern Peru: Internal enamel defects as indicators of early life stress. Georgia State: University.Google Scholar
  16. Goldstein, P. S., Coleman Goldstein, R. C., & Williams, P. R. (2009). You are what you drink: A sociocultural reconstruction of pre-hispanic fermented beverage use at Cerro Baúl, Moquegua, Peru. In J. Jennings & B. J. Bowser (Eds.), Drink, power, and society in the Andes (pp. 133–166). Gainesville: University Press of Florida.CrossRefGoogle Scholar
  17. Gumerman, G., IV. (1994). Feeding specialists: The effect of specialization on subsistence variation. In K. D. Sobolik (Ed.), Paleonutrition: The diet and health of prehistoric Americans. Center for Archaeological Investigations, Southern Illinois University at Carbondale Occasional Paper No. 22 (pp. 80–97). Carbondale: Board of Trustees, Southern Illinois University.Google Scholar
  18. Hardie, J. M. (1982). The microbiology of dental caries. Dental Update, 9, 199–208.Google Scholar
  19. Hastorf, C. A. (1996). Gender, space and food in prehistory. In R. W. Preucel & I. Hodder (Eds.), Contemporary archaeology in theory (pp. 460–484). Oxford: Blackwell Press.Google Scholar
  20. Hayashida, F. (2006). The Pampa de Chaparrí: Water, land, and politics on the North Coast of Peru. Latin American Antiquity, 17, 243–263.Google Scholar
  21. Hinde, K., & Milligan, L. A. (2011). Primate milk: Proximate mechanisms and ultimate perspectives. Evolutionary Anthropology, 20(1), 9–23.CrossRefGoogle Scholar
  22. Holloway, P. J. (1983). The role of sugar in the etiology of dental caries. Journal of Dentistry, 11, 189–213.CrossRefGoogle Scholar
  23. Iacumin, P., Bocherens, H., Mariotti, A., & Longinelli, A. (1996). Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters, 142(1–2), 1–6.CrossRefGoogle Scholar
  24. Katzenberg, M. A., Saunders, S. R., & Fitzgerald, W. R. (1993). Age differences in stable carbon and nitrogen isotope ratios in a population of prehistoric maize horticulturalists. American Journal of Physical Anthropology, 90, 267–281.CrossRefGoogle Scholar
  25. Katzenberg, M. A., Herring, D. A., & Saunders, S. R. (1996). Weaning and infant mortality: Evaluating the skeletal evidence. Yearbook of Physical Anthropology, 39, 177–199.CrossRefGoogle Scholar
  26. Klaus, H. D. (2008). Out of light came darkness: Bioarchaeology of mortuary ritual, health, and ethnogenesis in the Lambayeque Valley Complex, North Coast Peru (AD 900–1750). The Ohio State University.Google Scholar
  27. Klaus, H. D., & Alvarez-Calderón, R. (2017). Escaping conquest? A first look at regional cultural and biological variation in Postcontact Eten, Peru. In M. S. Murphy & H. D. Klaus (Eds.), Colonized bodies, worlds transformed: Toward a global bioarchaeology of contact and colonialism (pp. 95–128). Gainesville: University of Florida Press.Google Scholar
  28. Klaus, H. D., & Tam, M. E. (2009). Contact in the Andes: Bioarchaeology of systemic stress in colonial Mórrope, Peru. American Journal of Physical Anthropology, 138(3), 356–368.Google Scholar
  29. Klaus, H. D., & Tam, M. E. (2010). Oral health and the postcontact adaptive transition: A contextual reconstruction of diet in Mórrope, Peru. American Journal of Physical Anthropology, 141(4), 594–609.Google Scholar
  30. Modesto, R., & Justo, D. (1936 [1782]). Noticia Previa por el Liz. D. Justo Modesto Rubiños, y Andrade, Cura de Mórrope Año de 1782. Revista Historica, 10, 291–363.Google Scholar
  31. Murphy, M. S., & Klaus, H. D. ( 2017b) Transcending conquest: Bioarchaeological perspectives on conquest and culture contact for the 21st century. In M. S. Murphy & H. D. Klaus, (Eds.), Colonized bodies, worlds transformed: Toward a global bioarchaeology of contact and colonialism (pp. 1–38). Gainesville: University Press of Florida.Google Scholar
  32. Murra, J. V. (1972). El Control Vertical de un Máximo de Pisos Ecológicos en la Economía de la Sociedades Andinas. In J. V. Murra (Ed.), Visita de la Provincia de León de Huánuco (1562), vol. 2 (Vol. 2, pp. 429–476). Huánuco: Universidad Nacional Hermilio Valdizán.Google Scholar
  33. Richards, M. P., Mays, S., & Fuller, B. T. (2002). Stable carbon and nitrogen isotope values of bone and teeth reflect weaning age at the Medieval Wharram Percy site, Yorkshire, UK. American Journal of Physical Anthropology, 119(3), 205–210.CrossRefGoogle Scholar
  34. Rostworowski de Diez Canseco, M. (1977). Etnía y Sociedad: Costa Peruana Prehispánica. Lima: Instituto de Estudios Peruanos.Google Scholar
  35. Sayre, M. P., & Whitehead, W. T. (2017). Ritual and plant use at Conchopata: An Andean Middle horizon site. In M. P. Sayre & M. C. Bruno (Eds.), Social perspectives on ancient lives from Paleoethnobotanical data (pp. 121–144). Cham: Springer.CrossRefGoogle Scholar
  36. Shimada, I. (1994a). Pampa Grande and the Mochica culture. Austin: University of Texas Press.Google Scholar
  37. Shimada, I. (1994b). Los modelos de la organización sociopolítica de la Cultura Moche. In S. Uceda & E. Mujica (Eds.), Moche: Propuestas y Perspectivas (pp. 359–387). Lima: Travaux de l’Institut Français d’Etudes Andines.Google Scholar
  38. Shimada, I. (2000). The late prehispanic coastal societies. In L. L. Minelli (Ed.), The Inca world: The development of pre-Columbian Peru, AD 1000–1534 (pp. 49–110). Norman: University of Oklahoma Press.Google Scholar
  39. Simpson, S. W. (1991). Reconstructing patterns of growth disruption from enamel microstructures. In R. D. Hoppa & C. M. FitzGerald (Eds.), Human growth in the past: Studies from bones and teeth (pp. 241–263). Cambridge: Cambridge University Press.Google Scholar
  40. Steckel, R. H., & Rose, J. C., (Eds.). (2002b). Patterns of health in the western hemisphere. In R. H. Steckel & J. C. Rose (Eds.), The backbone of history: Health and nutrition in the Western hemisphere. (pp. 563–579). Cambridge: Cambridge University Press.Google Scholar
  41. Szpak, P., White, C. D., Longstaffe, F. J., Millaire, J.-F., Vásquez, V. F., & Sánchez. (2013). Carbon and nitrogen isotopic survey of northern Peruvian plants: Baselines for paleodietary and paleoecological studies. PLoS One, 8(1), 1–28.Google Scholar
  42. Szpak, P., Chicoine, D., Millaire, J.-F., White, C. D., Parry, R., & Longstaffe, F. J. (2016). Early horizon camelid management practices in the Nepeña Valley, north-central coast of Peru. The Journal of Human Palaeoecology, 21(3), 230–245.Google Scholar
  43. Tieszen, L. L., & Chapman, M. (1993). Carbon and nitrogen isotopic status of the major marine and terrestrial resources in the Atacama Desert of northern Chile. In A. Aufderheide (Ed.), First world congress on mummy studies (pp. 409–426). Santa Cruz/Canary Islands: World Congress on Mummy Studies.Google Scholar
  44. Toyne, J. M., White, C. D., Verano, J. W., Castillo, S. U., Millaire, J. F., & Longstaffe, F. J. (2014). Residential histories of elites and sacrificial victims at Huacas de Moche, Peru, as reconstructed from oxygen isotopes. Journal of Archaeological Science, 42, 15–28.CrossRefGoogle Scholar
  45. Tsutaya, T., & Yoneda, M. (2015). Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses: A review. American Journal of Physical Anthropology, 156(S59), 2–21.CrossRefGoogle Scholar
  46. Tung, T. A., & Knudson, K. J. (2018). Stable isotope analysis of a pre-hispanic Andean community: Reconstructing pre-Wari and Wari-era diets in the hinterland of the Wari empire, Peru. American Journal of Physical Anthropology, 165(1), 149–172.Google Scholar
  47. Turner, B. L., Edwards, J. L., Quinn, E. A., Kingston, J. D., & Van Gerven, D. P. (2007). Age-related variation in isotopic indicators of diet at medieval Kulubnarti, Sudanese Nubia. International Journal of Osteoarchaeology, 17(1), 1–25.CrossRefGoogle Scholar
  48. Turner, B. L., Kingston, J. D., & Armelagos, G. J. (2010). Variation in dietary histories among the immigrants of Machu Picchu: Carbon and nitrogen isotope evidence. Chungara: Revista de Antropología Chilena, 42(2), 515–524.Google Scholar
  49. Vásquez, V. F., & Rosales, T. (2012). Restos de fauna y vegetales de Huaca Ventarrón: Unidad –III X. In Ventarrón y Collud: origen y auge de la civilización en la costa norte del Perú. By Ignacio Alva de Meneses (pp. 251–272). Lima: Ministerio de Cultura.Google Scholar
  50. Verano, J. W., & DeNiro, M. J. (1993). Locals or foreigners? Morphological, biometric and isotopic approaches to the question of group affinity in human skeletal remains recovered from unusual archaeological contexts. In M. K. Sandford (Ed.), Investigations of ancient human tissue: chemical analyses in anthropology (pp. 361–386). Langhorne: Gordon and Breach Science Publishers.Google Scholar
  51. White, C. D., Nelson, A. J., Longstaffe, F. J., Grupe, G., & Jung, A. (2009). Landscape bioarchaeology at Pacatnamu, Peru: Inferring Mobility from δ13C and δ15N Values of Hair. Journal of Archaeological Science, 36(7), 1527–1537.CrossRefGoogle Scholar
  52. Wood, J. W., Milner, G. R., Harpending, H. C., & Weiss, K. M. (1992). The osteological paradox – Problems of inferring prehistoric health from skeletal samples. Current Anthropology, 33(4), 343–370.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bethany L. Turner
    • 1
  • Haagen D. Klaus
    • 2
  1. 1.Department of AnthropologyGeorgia State UniversityAtlantaUSA
  2. 2.Department of Sociology and AnthropologyGeorge Mason UniversityFairfaxUSA

Personalised recommendations