Advertisement

Mechatronic Prosthesis for Transfemoral Amputation with Intelligent Control Based on Neural Networks

  • Benalcázar Alexander
  • Comina Mayra
  • Danni De la CruzEmail author
  • Tobar Johanna
Conference paper
  • 52 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1194)

Abstract

This article presents the design of a low-cost prototype mechatronic prosthesis for a leg with transfemoral amputation. The development for construction of this mechanical prosthesis is detailed in “Low Cost Mechatronics Prototype Prosthesis for Transfermoral Amputation Controlled by Myoelectric Signals” [1]. This prototype was designed and implemented with a mechanical brake of the knee and foot to help people walk. This article expands the development of this prosthesis with the implementation of the electronic part. The prosthesis is activated by signals obtained by inertial sensors (IMU), which capture the angles generated when walking (in thigh, knee and foot) allowing to reproduce the human gait cycle through a controller, based on neural networks, which permits to replicate the movement by the activation of servomotors. In addition, the prosthesis has a constant monitoring system of physiological parameters such as temperature and humidity inside the stump, which can be visualized through an application for smart devices to protect and alert about the patient’s wellness.

Keywords

Mechatronics Prostheses Gait cycle Neural networks 

References

  1. 1.
    Bravo, X., Comina, M., Tobar, J., De la Cruz, D., Corella, J.: Low cost mechatronics prototype prosthesis for transfermoral amputation controlled by myoelectric signals. In: Engineering and Computer Science (2017)Google Scholar
  2. 2.
    Consejo Nacional para la Igualdad de Discapacidades CONADIS. Ministerio de Salud Pública del Ecuador. Obtenido de (2017). http://www.consejodiscapacidades.gob.ec/estadistica/index.html
  3. 3.
    Parra, P.: Bioingeniería: “Prótesis”. Universidad Politécnica Salesiana, Cuenca (2010)Google Scholar
  4. 4.
    Tardón, L.: El diseñador biónico Hugh Herr, Premio Princesa de Asturias de Investigación Científica. El Mundo, pp. 12–13 (2016)Google Scholar
  5. 5.
    Martínez, F.: Diseño de prótesis transfemoral activa. Centro Nacional de Investigación y Desarrollo Tecnológico, Cuernavaca (2013)Google Scholar
  6. 6.
    McGeer, T.: Passive Dynamic Walking. Simon Fraser University, Burnaby (2005)Google Scholar
  7. 7.
    Organización Mundial de la Salud. Ecuador está en el tercer puesto de los países con menor estatura en Sudamérica. El Tiempo (2016)Google Scholar
  8. 8.
    Central Intelligence Agency. The World FactBook. https://www.cia.gov/library/publications/the-world-factbook/geos/ec.html. Accessed 12 Mar 2018
  9. 9.
    Lee, M., Ju, H., Song, J., Park, C.: Kinematic model-based pedestrian dead reckoning for heading correction and lower body motion tracking. Sensors 15, 28129–28153 (2015)CrossRefGoogle Scholar
  10. 10.
    Cover, T.: Methodologies of Pattern Recognition. Watanabe, Satoshi (1969)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Benalcázar Alexander
    • 1
  • Comina Mayra
    • 2
  • Danni De la Cruz
    • 1
    Email author
  • Tobar Johanna
    • 2
  1. 1.Department of Electrical and ElectronicsUniversidad de las Fuerzas Armadas – ESPESangolquíEcuador
  2. 2.Department of Energy Sciences and MechanicsUniversidad de las Fuerzas Armadas – ESPESangolquíEcuador

Personalised recommendations