Advertisement

Human Activity Recognition Using an Accelerometer Magnitude Value

  • Jhon Ivan Pilataxi PiltaxiEmail author
  • María Fernanda Trujillo Guerrero
  • Vanessa Carolina Benavides Laguapillo
  • Jorge Andrés Rosales Acosta
Conference paper
  • 41 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1194)

Abstract

Human activity recognition (HAR) is important for many applications to help healthcare and support systems due to fast increase of senior population worldwide. This paper describes a human activity recognition framework based on feature selection techniques from a waist single accelerometer. The objective is to identify the most important features to recognize static and dynamic human activities based on module acceleration, since a public database. A set of time and frequency features are getting from the module, so to analyze the impact of the features on the performance of the recognition system, a ReliefF algorithm is applied. Finally, a multiclass classification model is implemented thought Support Vector Machine (SVM). Experimental results indicate that the accuracy of the propose model is over of 85%, this percentage is like other works in which use each axes accelerometer. The advantage of this work is the use of the module value that allow identify the activity independently of the sensor position, also it reduces the computer resources.

Keywords

Waist single accelerometer Accelerometer module value Time and frequency features Support Vector Machine (SVM) Human Activity Recognition (HAR) 

References

  1. 1.
    Abhayasinghe, N., Murray, I.: Human activity recognition using thigh angle derived from single thigh mounted IMU data. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 111–115. IEEE (2014)Google Scholar
  2. 2.
    Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42, 790–808 (2012)CrossRefGoogle Scholar
  3. 3.
    Cook, D.J., Das, S.K.: Pervasive computing at scale: transforming the state of the art. Pervasive Mob. Comput. 8, 22–35 (2012)CrossRefGoogle Scholar
  4. 4.
    Campbell, A., Choudhury, T.: From smart to cognitive phones. IEEE Pervasive Comput. 11(3), 7–11 (2012)CrossRefGoogle Scholar
  5. 5.
    Kallur, D.C.: Human localization and activity recognition using distributed motion sensors. Ph.D. thesis, Oklahoma State University (2014)Google Scholar
  6. 6.
    Motion capture systems - optitrack. https://www.naturalpoint.com/optitrack/
  7. 7.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24646-6_1CrossRefGoogle Scholar
  8. 8.
    Yatani, K., Truong, K.N.: Bodyscope: a wearable acoustic sensor for activity recognition. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 341–350. ACM (2012)Google Scholar
  9. 9.
    Yu, C.-R., Wu, C.-L., Lu, C.-H., Fu, L.-C.: Human localization via multi-cameras and floor sensors in smart home. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC), vol. 5, pp. 3822–3827, October 2006Google Scholar
  10. 10.
    Cheok, A.D., Li, Y.: Ubiquitous interaction with positioning and navigation using a novel light sensor-based information transmission system. Pers. Ubiquitous Comput. 12(6), 445–458 (2008)CrossRefGoogle Scholar
  11. 11.
    Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD 2010), Washington DC. WISDM Activity Prediction (2010). http://www.cis.fordham.edu/wisdm/dataset.php
  12. 12.
    Reyes-Ortiz, J.L., Anguita, D., Ghio, A., Oneto, L., Parra, X.: UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+from+Continuous+Ambient+Sensor+Data
  13. 13.
  14. 14.
  15. 15.
    Hong, Y.J., Kim, I.J., Ahn, S.C., Kim, H.G.: Mobile health monitoring system based on activity recognition using accelerometer. Simul. Model. Pract. Theory 18(4), 446–455 (2010)CrossRefGoogle Scholar
  16. 16.
    Jimenez, A.R., Seco, F., Prieto, C., Guevara, J.: A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. In: Proceedings of the IEEE International Symposium on Intelligent Signal Processing (WISP), pp. 37–42, August 2009Google Scholar
  17. 17.
    Chernbumroong, S., Atkins, A.S., Yu, H.: Activity classification using a single wrist-worn accelerometer. In: 2011 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA), pp. 1–6. IEEE (2011)Google Scholar
  18. 18.
    Guo, G., Li, S.Z.: Content-based audio classification and retrieval by support vector machines. IEEE Trans. Neural Netw. 14(1), 209–215 (2003)CrossRefGoogle Scholar
  19. 19.
    Gandhi, R.: Support Vector Machine — Introduction to Machine Learning Algorithms, Towards Data Science (2018). https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47. Acceded 12 Oct 2019
  20. 20.
    Anderson, I., et al.: Shakra: tracking and sharing daily activity levels with un-augmented mobile phones. Mob. Netw. Appl. 12(2–3), 185–199 (2007)CrossRefGoogle Scholar
  21. 21.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35395-6_30CrossRefGoogle Scholar
  22. 22.
    Bulbul, E., Cetin, A., Alper, I.: Human activity recognition using smarphones. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey (2018)Google Scholar
  23. 23.
    Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes, J.: A public domain dataset for human activity recognition using smarphones. In: ESANN 2013 Proceedings on European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (2013)Google Scholar
  24. 24.
    Uddin, M.T., Billah, M.M., Hossain, M.F.: Random forests based recognition of human activities on smarphones. In: 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh. IEEE (2016)Google Scholar
  25. 25.
    Ronao, C., Cho, S.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)CrossRefGoogle Scholar
  26. 26.
    Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C.J., Robert, P.: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 50(6), 711–723 (2003)CrossRefGoogle Scholar
  27. 27.
    Hemmati, S.: Detecting postural transitions: a robust wavelet-based approach. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2016)Google Scholar
  28. 28.
    Ganea, R., Paraschiv-lonescu, A., Aminian, K.: Detection and classification of postural transitions in real-world conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 20(5), 688–696 (2012)CrossRefGoogle Scholar
  29. 29.
    Doulah, A., Shen, X., Sazonov, E.: Early detection of the initiation of sit-to-stand posture transitions using orthosis-mounted sensors. Sensors 17(12), 2712 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jhon Ivan Pilataxi Piltaxi
    • 1
    Email author
  • María Fernanda Trujillo Guerrero
    • 1
  • Vanessa Carolina Benavides Laguapillo
    • 1
  • Jorge Andrés Rosales Acosta
    • 1
  1. 1.Escuela Politécnica NacionalQuitoEcuador

Personalised recommendations