Osteosynthesis Device Evaluation Using the Boundary Elements Method

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1194)


The elastic analysis of a dynamic compression plate (DCP) used for the forearm bone fracture reduction is presented. For this propose is employed a tool based on the Boundary Element Method (BEM) and an iterative domain decomposition technique with which is possible to develop 3D models and non-homogeneous materials. The numerical results obtained for the analysis has been validated establishing a comparison with an experimental test employing a DCP made of steel 316L with real dimensions. The results demonstrate that it is possible to use the BEM for the osteosynthesis devices design.


Dynamic compression plate Elastostatic analysis Boundary element method Iterative domain decomposition 


  1. 1.
    Taljanovic, M.S., Jones, M.D., Ruth, J.T., Benjamin, J.D., Sheppard, J.E., Hunter, T.B.: Fracture fixation. RadioGraphics 23(6), 1569–1590 (2003)Google Scholar
  2. 2.
    Slone, R.M., Heare, M.M., Van der Griend, R.A., Montgomery, W.J.: Orthopedic fixation devices. RadioGraphics 11(5), 823–847 (1991)Google Scholar
  3. 3.
    Chew, F.S., Pappas, C.N.: Radiology of the devices for fracture. Treatment in the extremities. Clin. Radiol. North America 33(2), 375–389 (1995)Google Scholar
  4. 4.
    Tarnita, D., et al.: Numerical simulations of human tibia osteosynthesis using modular plates based on Nitinol staples. Romanian J. Morphol. Embryol. 51(1), 145–150 (2010)Google Scholar
  5. 5.
    Baharnezhad, S., Farhangi, H., Allahyari, A.: Influence of geometry and design parameters on flexural behavior of dynamic compression plates (DCP): experiment and finite element analysis. J. Mech. Med. Biol. 13(3), 1350032 (20 p.) (2013)Google Scholar
  6. 6.
    Snow, M., Thompson, G., Turner, P.: A mechanical comparison of the locking compression plate (LCP) and the low contact-dynamic compression plate (DCP) in an osteoporotic bone model. J. Orthop. Trauma 22(2), 121–125 (2008)Google Scholar
  7. 7.
    Wieding, J., Souffrant, R., Fritsche, A., Mittelmeier, W., Bader, R.: Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling. PLoS ONE 7(3), e33776 (2012). Scholar
  8. 8.
    Alarcon, E., Brebbia, C., Dominguez, J.: The boundary element method in elasticity. Int. J. Mech. Sci. 20(9), 625–639 (1978)zbMATHGoogle Scholar
  9. 9.
    Brebbia, C.A., Telles, J.C., Wrobel, L.C.: Boundary Element Techniques. Springer, Berlin (1984). Scholar
  10. 10.
    Kane, J.: Boundary Element Analysis in Engineering Continuum Mechanics. Prentice- Hall, New Jersey (1994)Google Scholar
  11. 11.
    Aliabadi, M.H.: The Boundary Element Method, Vol. 2: Applications in Solids and Structures. Wiley, Chichester (2000)Google Scholar
  12. 12.
    Cheng, A.H., Chen, C.S., Golberg, M.A., Rashed, Y.F.: BEM for thermoelasticity and elasticity with body force-a revisit. Eng. Anal. Bound. Elements 25, 377–387 (2001)zbMATHGoogle Scholar
  13. 13.
    Brebbia, C.A., Domínguez, J.: Boundary Element: an Introductory Course. Computational Mechanics, Boston (1989)Google Scholar
  14. 14.
    Becker, A.: Boundary Element Method in Engineering. McGraw-Hill Co., New York (1992)Google Scholar
  15. 15.
    Annicchiarico, W., Martínez, G., Cerrolaza, M.: Boundary elements and β-spline surface modeling for medical applications. J. Appl. Math. Model. 31(2), 194–208 (2007)zbMATHGoogle Scholar
  16. 16.
    Gámez, B., Ojeda, D., Divo, E., Kassab, A., Cerrolaza, M.: Crack analysis and cavity detection in cortical bone using the boundary element method. In: APCOM 2007 – EPMESCXI, Japan (2007)Google Scholar
  17. 17.
    Müller-Karger, C., González, C., Aliabadi, M.H., Cerrolaza, M.: Three dimensional BEM and FEM stress analysis of the human tibia under pathological conditions. J. Comput. Modeling Eng. Sci. 2(1), 1–13 (2001)Google Scholar
  18. 18.
    Ojeda, D., Divo, E., Kassab, A., Cerrolaza, M.: Cavity detection in biomechanics by an inverse evolutionary point load BEM technique. Inverse Probl. Sci. Eng. 16(8), 981–993 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ojeda, D., Gámez, B., Divo, E., Kassab, A., Cerrolaza, M.: Singular superposition elastostatics BEM/GA algorithm for cavity detection. In: Proceeding of 29th International Conference on Boundary Elements and Other Mesh Reduction Methods, 04–06 June 2007. The New Forest, UK (2007)Google Scholar
  20. 20.
    Divo, E., Kassab, A.J.: A generalized BIE for transient heat conduction in heterogeneous media. AIAA J. Thermophys. Heat Transf. 12(3), 364–373 (1998)Google Scholar
  21. 21.
    Divo, E., Kassab, A.J.: A boundary integral equation for steady heat conduction in anisotropic and heterogeneous media. Numer. Heat Transf. Part B: Fundam. 32(1), 37–61 (1997)Google Scholar
  22. 22.
    Kassab, A.J., Divo, E.: A general boundary integral equation for isotropic heat conduction problems in bodies with space dependent properties. Eng. Anal. Bound. Elements 18(4), 273–286 (1996)Google Scholar
  23. 23.
    Divo, E., Kassab, A.J.: Boundary Element Method for Heat Conduction with Applications in Nonhomogeneous Media. Wessex Institute of Technology (WIT) Press, Southampton (2003)zbMATHGoogle Scholar
  24. 24.
    Erhart, K., Divo, E., Kassab, A.: A parallel domain decomposition boundary element method approach for the solution of large-scale transient heat conduction problems. Eng. Anal. Bound. Elements 30, 553–563 (2006)zbMATHGoogle Scholar
  25. 25.
    Divo, E., Kassab, A., Rodríguez, F.: Parallel domain decomposition approach for large-scale threedimensional boundary-element models in linear and nonlinear heat conduction. Numer. Heat Transf. Part B 44, 417–437 (2003)Google Scholar
  26. 26.
    Divo, E., Kassab, A.J.: A meshless method for conjugate heat transfer problems. Eng. Anal. Bound. Elements 29, 136–149 (2005)zbMATHGoogle Scholar
  27. 27.
    Divo, E.A., Kassab, A.J.: An efficient localized RBF meshless method for fluid flow and conjugate heat transfer. ASME J. Heat Transf. 129, 124–136 (2007)Google Scholar
  28. 28.
    Gámez, B., Divo, E.A., Kassab, A.J., Cerrolaza, M., Ojeda, D.: Parallelized iterative domain decomposition boundary element method for thermoelasticity in piecewise non-homogeneous media. Eng. Anal. Bound. Elements 32(12), 1061–1073 (2008)Google Scholar
  29. 29.
    Müller, M.E., Allgöwer, M., Schneider, R., Willenegger, R.: AO Manual of Internal Fixation, 3rd edn. Springer, Berlin (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Design, Simulation and Manufacturing Research Group (GIDSIM)Técnica del Norte UniversityIbarraEcuador
  2. 2.Intelligent Systems Research Group (GISI)Técnica del Norte UniversityIbarraEcuador

Personalised recommendations