Advertisement

Student Dropout Model Based on Logistic Regression

  • Blanca Rocio Cuji ChachaEmail author
  • Wilma Lorena Gavilanes López
  • Víctor Xavier Vicente Guerrero
  • Wilma Guadalupe Villacis Villacis
Conference paper
  • 52 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1194)

Abstract

Student dropout is a phenomenon that affects the majority of higher education institutions in Ecuador. The objective of the research was to design a predictive model to detect possible dropouts before they decide to abandon their studies. This model is based on logistic regression, and the methodology used in this research is based on the Knowledge Discovery in Databases (KDD) Model; which has five stages: selection, processing, transformation, data mining and evaluation. The application of the Logit function of the R tool for the logistic regression helps the construction of the predictive model. This model evaluates possible dropout students and leads to the conclusion that grades have a greater influence on student dropout.

Keywords

Logistic regression Predictive model Student dropout 

References

  1. 1.
    Kerby, M.B.: Toward a new predictive model of student retention in higher education: an application of classical sociological theory. J. Coll. Stud. Retent. Res. Theory Pract. 17, 138–161 (2015).  https://doi.org/10.1177/1521025115578229CrossRefGoogle Scholar
  2. 2.
    Kumar, M., Singh, A.J., Handa, D.: Literature survey on educational dropout prediction. Int. J. Educ. Manag. Eng. 7, 8–19 (2017).  https://doi.org/10.5815/ijeme.2017.02.02CrossRefGoogle Scholar
  3. 3.
    Ercan, E.: At-risk students using machine learning techniques. Int. J. Mach. Learn. Comput. 2(4), 476 (2012)Google Scholar
  4. 4.
    Kumar, M., Singh, A.J., Handa, D.: Literature survey on student’s performance prediction in education using data mining techniques. Int. J. Educ. Manag. Eng. 7, 40–49 (2017).  https://doi.org/10.5815/ijeme.2017.06.05CrossRefGoogle Scholar
  5. 5.
    Martelo, R.J., Herrera, K., Villabona, N.: Estrategias para disminuir la deserción universitaria mediante series de tiempo y multipol. Revista Espacios 38, 4–6 (2017). ISSN 0798 1015Google Scholar
  6. 6.
    Kumar, M., Singh, A.J.: Evaluation of data mining techniques for predicting student’s performance predicting students academic performance using data mining techniques: a case study view project evaluation of data mining techniques for predicting student’s performance. Artic Int. J. Mod. Educ. Comput. Sci. 8, 25–31 (2017).  https://doi.org/10.5815/ijmecs.2017.08.04CrossRefGoogle Scholar
  7. 7.
    Strecht, P., Cruz, L., Soares, C., et al.: A comparative study of classification and regression algorithms for modelling students’ academic performance. In: Proceedings of 8th International Conference on Educational Data Mining, pp. 392–395 (2015)Google Scholar
  8. 8.
    Oyedotun, O.K., Tackie, S.N., Olaniyi, E.O., Khashman, A.: Data mining of students’ performance: Turkish students as a case study. Int. J. Intell. Syst. Appl. 7, 20–27 (2015).  https://doi.org/10.5815/ijisa.2015.09.03CrossRefGoogle Scholar
  9. 9.
    Ismail, S., Abdulla, S.: Design and implementation of an intelligent system to predict the student graduation AGPA. Aust. Educ. Comput. 30, 7–9 (2015)Google Scholar
  10. 10.
    Cuji, B., Gavilanes, W., Sanchez, R.: Modelo predictivo de deserción estudiantil basado en arboles de decisión. Espacios 38, 17 (2017)Google Scholar
  11. 11.
    Ramesh, V., Parkavi, P., Ramar, K.: Predicting student performance: a statistical and data mining approach. Int. J. Comput. Appl. 63, 35–39 (2013).  https://doi.org/10.5120/10489-5242CrossRefGoogle Scholar
  12. 12.
    Iam-On, N., Boongoen, T.: Generating descriptive model for student dropout: a review of clustering approach. Hum.-Centric Comput. Inf. Sci. 7, 1–24 (2017).  https://doi.org/10.1186/s13673-016-0083-0CrossRefzbMATHGoogle Scholar
  13. 13.
    Altujjar, Y., Altamimi, W., Al-Turaiki, I., Al-Razgan, M.: Predicting critical courses affecting students performance: a case study. Procedia Comput. Sci. 82, 65–71 (2016).  https://doi.org/10.1016/j.procs.2016.04.010CrossRefGoogle Scholar
  14. 14.
    Timaran, R., Jiménez, J.: Detection of student dropout patterns in undergraduate programs of higher education institutions with CRISP-DM. Form. University, pp. 1–19 (2014)Google Scholar
  15. 15.
    De la Fuente Fernández, S.: Logistic Regression. Santiago de la Fuente Fernández (2011)Google Scholar
  16. 16.
    Llano, R., Mosquera, V.: The logit model an alternative to measure probability of student permanence, Manizales (2006)Google Scholar
  17. 17.
    National Full Law of the National System of Public RecordsGoogle Scholar
  18. 18.
    Daniel, S., Cesar, P.: Data mining. Techniques and Tools, pp. 13–14 (2007)Google Scholar
  19. 19.
    Silva Ayçaguer, L.C.: Excursion to the logistic regression in health sciences. Díaz de Santos Editions (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Blanca Rocio Cuji Chacha
    • 1
    Email author
  • Wilma Lorena Gavilanes López
    • 1
  • Víctor Xavier Vicente Guerrero
    • 1
  • Wilma Guadalupe Villacis Villacis
    • 1
  1. 1.Faculty of Human and Education SciencesTechnical University of AmbatoAmbatoEcuador

Personalised recommendations