Enterprise Architecture an Approach to the Development of IoT Services Oriented to Building Management

  • Maria Camargo-Vila
  • German Osma-PintoEmail author
  • Homero Ortega-Boada
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1194)


Currently, various sectors including industry, health, academia and others, are facing huge challenges regarding the fast I.T. development, and more broadly, the IoT (Internet of things). The renewable energy sector is not exempt from this new paradigm: for example, an application for monitoring the photovoltaic panel system integrated with a green roof will offer the opportunity to improve resources and energy efficiency. This requires a structured approach to integrate all the elements involved in this context; and although the established technology exists, there is not a methodology to build platforms that integrate hardware and software and can interoperate effectively. Therefore, this document presents a methodology under an enterprise architecture approach, to design and implement an IoT-based service platform for monitoring a photovoltaic system integrated with vegetation. A case study is presented where the developed concept is applied.


IoT Building management Photovoltaic system Green roof Enterprise architecture 


  1. 1.
    Cisco Networking Academy. Cisco Networking Academy Builds IT skills & education for future careersGoogle Scholar
  2. 2.
    Pan, J., Jain, R., Paul, S., Tam, V., Saifullah, A., Sha, M.: An Internet of Things framework for smart energy in buildings: designs, prototype, and experiments. IEEE IoT J. 2(6), 527–537 (2015)Google Scholar
  3. 3.
    Unidad de Planeación Minero Energética. Balance energético colombiano- BECOGoogle Scholar
  4. 4.
    Minoli, D., Sohraby, K., Occhiogrosso, B.: IoT considerations, requirements, and architectures for smart buildings-energy optimization and next-generation building management systems. IEEE IoT J. 4(1), 269–283 (2017)Google Scholar
  5. 5.
    Consejo Colombiano de Construcción Sostenible. Programa LEED® en Colombia - Consejo Colombiano de Construcción Sostenible - CCCSGoogle Scholar
  6. 6.
    GISEL. Validación experimental del beneficio energético de la implementación de sistemas fotovoltaicos (FV) integrados con techos verdes para entornos tropicales con clima cálido, pp. 1–40 (2014)Google Scholar
  7. 7.
    GISEL, GIEMA, and GIEFIVET. Viabilidad técnica de la implementación de sistemas fotovoltaicos (FV) integrados con vegetación como estrategia de generación distribuida y horticultura en entornos urbanos de clima cálido tropical, pp. 1–46 (2016)Google Scholar
  8. 8.
    Castillo Santos, R., Castillo García, H.: Arquitectura Empresarial y las Organizaciones Estatales, vol. 1, no. 1, pp. 1–9 (2014)Google Scholar
  9. 9.
    Sarasty España, H.F.: Documentación y análisis de los principales frameworks de arquitectura de software en aplicaciones empresariales. Ph.D. thesis (2015)Google Scholar
  10. 10.
    McGibney, A., Rea, S., Ploennigs, J.: Open BMS - IoT driven architecture for the internet of buildings. In: IECON Proceedings (Industrial Electronics Conference), pp. 7071–7076 (2016)Google Scholar
  11. 11.
    Faruque, M.A.A., Vatanparvar, K.: Energy management-as-a-service over fog computing platform. IEEE IoT J. 3(2), 161–169 (2015)Google Scholar
  12. 12.
    Brad, B.S., Murar, M.M.: Smart buildings using IoT technologies. Constr. Unique Buildings Struct. 5(20), 15–27 (2014)Google Scholar
  13. 13.
    Garcia, O., Alonso, R.S., Tapia, D.I., Corchado, J.M.: Electrical power consumption monitoring in hotels using the n-Core Platform. In: Clemson University Power Systems Conference, PSC 2016 (2016)Google Scholar
  14. 14.
    Nguyen, N.H., Tran, Q.T., Leger, J.M., Vuong, T.P.: A real-time control using wireless sensor network for intelligent energy management system in buildings. In: IEEE Worskshop on Environmental, Energy, and Structural Monitoring Systems, Proceedings EESMS 2010–2010, pp. 87–92 (2010)Google Scholar
  15. 15.
    Linder, L., Vionnet, D., Bacher, J.P., Hennebert, J.: Big building data-a big data platform for smart buildings. Energy Procedia 122, 589–594 (2017)CrossRefGoogle Scholar
  16. 16.
    Figueiredo, J., Costa, J.S.D.: A SCADA system for energy management in intelligent buildings. Energy Build. 49, 85–98 (2012)CrossRefGoogle Scholar
  17. 17.
    Moreno, M.V., Zamora, M.A., Skarmeta, A.F.: User-centric smart buildings for energy sustainable smart cities. Trans. Emerg. Telecommun. Technol. 25, 41–55 (2014)CrossRefGoogle Scholar
  18. 18.
    Tragos, E.Z., et al.: An IoT based intelligent building management system for ambient assisted living. In: 2015 IEEE International Conference on Communication Workshop, ICCW 2015, pp. 246–252 (2015)Google Scholar
  19. 19.
    Jamborsalamati, P., Fernandez, E., Hossain, M.J., Rafi, F.H.M.: Design and implementation of a cloud-based IoT platform for data acquisition and device supply management in smart buildings. In: 2017 Australasian Universities Power Engineering Conference, AUPEC 2017, 1–6 November 2017 (2018)Google Scholar
  20. 20.
    Cheng, B., Longo, S., Cirillo, F., Bauer, M., Kovacs, E.: Building a big data platform for smart cities: experience and lessons from santander. In: Proceedings of the 2015 IEEE International Congress on Big Data, BigData Congress 2015, pp. 592–599 (2015)Google Scholar
  21. 21.
    UIT. Visión general de la Internet de las cosas (ITU-T Y.4000/Y.2060 (06/2012)), p. 20 (2012)Google Scholar
  22. 22.
    Josey, A., Lankhorst, M., Band, I., Jonkers, H., Quartel, D.: An introduction to the archimate® 3.0 specification, June 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maria Camargo-Vila
    • 1
  • German Osma-Pinto
    • 1
    Email author
  • Homero Ortega-Boada
    • 1
  1. 1.Universidad Industrial de SantanderBucaramangaColombia

Personalised recommendations