Definitions and Basic Mechanism of Coronary Artery Disease (CAD)

  • Martin W. King
  • Tushar Bambharoliya
  • Harshini Ramakrishna
  • Fan Zhang
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


Coronary artery disease (CAD) also known as coronary heart disease (CHD) is described as the pathologic process affecting the coronary arteries, while atherosclerotic cardiovascular disease (ASCVD or CVD for short) is referred to as the pathological process affecting the entire arterial circulation, not just the coronary arteries. This chapter defines CAD and CHD along with their atherosclerotic pathogenic pathway and all the factors associated with it. The progression of atherosclerosis and its clinical findings are explained at various stages together with a description of the time course of inflammation and atherosclerotic calcification.


Atherosclerosis Plaque Thrombosis Blood coagulation Plaque rupture Calcification ST-elevation myocardial infarction Non-ST-elevation myocardial infarction Electrocardiography 


  1. 5.
    Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation. 2001;104(24):2981.Google Scholar
  2. 6.
    Bonow RO, Mann DL, Zipes DP, Libby P. Braunwald’s heart disease: a textbook of cardiovascular medicine. Philadelphia: Elsevier/Saunders; 2015.Google Scholar
  3. 11.
    Wilson PWF, O’Donnell CJ. Chapter 1 – Epidemiology of chronic coronary artery disease. In: Chronic coronary artery disease. Philadelphia: Elsevier; 2018. p. 1–15.Google Scholar
  4. 12.
    Kosiborod M, Arnold SV. Chapter 16 – Goals of therapy. In: de Lemos JA, Omland T, editors. Chronic coronary artery disease. Philadelphia: Elsevier; 2018. p. 227–33.Google Scholar
  5. 13.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.Google Scholar
  6. 14.
    Hansson GK. Mechanisms of disease: inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005;352(16):1685–95.Google Scholar
  7. 15.
    Spencer JH, Anderson SE, Lahm R, Iaizzo PA. The coronary vascular system and associated medical devices. In: Iaizzo PA, editor. Handbook of cardiac anatomy, physiology, and devices. Cham: Springer; 2015. p. 137–61.Google Scholar
  8. 16.
    Fortier A, Gullapalli V, Mirshams R. Review of biomechanical studies of arteries and their effect on stent performance. IJC Heart & Vessels. 2014;4:12–8.Google Scholar
  9. 17.
    Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, et al. Ly-6C(hi) monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest. 2006;117(1):195–205.Google Scholar
  10. 18.
    Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med. 2017;95(11):1153–65.Google Scholar
  11. 19.
    Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis. Micron. 2006;37(3):208–22.Google Scholar
  12. 20.
    Bäck M, Hansson G. Chapter 4 – Basic mechanisms of atherosclerosis. In: de Lemos JA, Omland T, editors. Chronic coronary artery disease. Philadelphia: Elsevier; 2018. p. 45–54.Google Scholar
  13. 21.
    Borow KM, Nelson JR, Mason RP. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis. 2015;242(1):357–66.Google Scholar
  14. 22.
    Ma S, Fan L, Cao F. Combating cellular senescence by sirtuins: implications for atherosclerosis. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1822–30.Google Scholar
  15. 23.
    Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol. 2001 Sep;16(5):285–92.Google Scholar
  16. 24.
    Anlamlert W, Lenbury Y, Bell J. Modeling fibrous cap formation in atherosclerotic plaque development: stability and oscillatory behavior. Adv Differ Equ. 2017;2017(1):195.Google Scholar
  17. 25.
    Lopes J, Adiguzel E, Gu S, Liu S, Hou G, Heximer S, et al. Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. Am J Pathol. 2013;182(6):2241–53.Google Scholar
  18. 26.
    Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol. 2010;30(7):1282–92.Google Scholar
  19. 27.
    Yahagi K, Otsuka F, Sakakura K, Joner M, Virmani R. Native coronary artery and bypass graft atherosclerosis. In: Lanzer P, editor. PanVascular medicine. Berlin/Heidelberg: Springer; 2015. p. 273–301.Google Scholar
  20. 28.
    Kyavar M, Alemzadeh-Ansari M. Chapter 35 – Stable ischemic heart disease. In: Maleki M, Alizadehasl A, Haghjoo M, editors. Practical cardiology. St. Louis: Elsevier; 2018. p. 591–630.Google Scholar
  21. 29.
    Alexopoulos N, Raggi P. Calcification in atherosclerosis. Nat Rev Cardiol. 2009;6:681.Google Scholar
  22. 32.
    Quillard T, Croce KJ. Pathobiology and mechanisms of atherosclerosis. In: Aikawa E, editor. Cardiovascular imaging: arterial and aortic valve inflammation and calcification. Cham: Springer; 2015. p. 3–38.Google Scholar
  23. 33.
    Nakahara T, Strauss HW. From inflammation to calcification in atherosclerosis. Eur J Nucl Med Mol Imaging. 2017;44(5):858–60.Google Scholar
  24. 36.
    Weaver J. Insights into how calcium forms plaques in arteries pave the way for new treatments for heart disease. PLoS Biol. 2013;11(4):e1001533.Google Scholar
  25. 37.
    Cocker MS, McArdle B, Spence JD, Lum C, Hammond RR, Ongaro DC, et al. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what leonardo da vinci could not see. J Nucl Cardiol. 2012;19(6):1211–25.Google Scholar
  26. 38.
    Albanese I, Khan K, Barratt B, Al Kindi H, Schwertani A. Atherosclerotic calcification: Wnt is the hint. J Am Heart Assoc. 2018;7:e007356.Google Scholar
  27. 39.
    Sedehi D, Cigarroa JE. Chapter 6 – Precipitants of myocardial ischemia. In: de Lemos JA, Omland T, editors. Chronic coronary artery disease. Philadelphia: Elsevier; 2018. p. 69–77.Google Scholar
  28. 40.
    Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2011 Dec;32(23):2999–3054.Google Scholar
  29. 41.
    Nikus K, Birnbaum Y, Eskola M, Sclarovsky S, Zhong-Qun Z, Pahlm O. Updated electrocardiographic classification of acute coronary syndromes. Curr Cardiol Rev. 2014;10(3):229–36.Google Scholar
  30. 42.
    Amsterdam EA, Wenger NK, Brindis RG, Casey J, Donald E, Ganiats TG, Holmes J, David R, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64(24):e139.Google Scholar
  31. 43.
    Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410–22.Google Scholar
  32. 46.
    Sahoo KP, Thakkar KH, Lin W, Chang P, Lee M. On the design of an efficient cardiac health monitoring system through combined analysis of ECG and SCG signals. Sensors. 2018;18(2):E379.Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Martin W. King
    • 1
    • 2
  • Tushar Bambharoliya
    • 1
  • Harshini Ramakrishna
    • 1
  • Fan Zhang
    • 1
  1. 1.Wilson College of TextilesNorth Carolina State UniversityRaleighUSA
  2. 2.College of TextilesDonghua UniversityShanghaiChina

Personalised recommendations