Processing Stratigraphical Archives

  • Silvia Elena Piovan
Part of the Springer Geography book series (SPRINGERGEOGR)


Written documents, maps, paintings, and other types of historical sources are often used in association with many types of geohistorical sources, such as those from sediments and archaeological and biological remains. These kinds of data sources are the objects of study in specific disciplinary sectors such as earth science, archaeology, and biology; these sources often require deeper knowledge in specific fields such as pedology, geoarchaeology, climatology, palynology, and paleobotany. This chapter provides a review of methods to investigate stratigraphical records. These methods are often used together in the reconstruction of past environments; they can also be used to corroborate or validate results from other sources of data, such as written documents or historical maps. The description of each method includes the tools and structures necessary for its application as well as short examples from the international context.


Open section Borehole Deposit Soil Geoarchaeology Micromorphology Palynological analysis Pollen NPP Archaeobotany Petrography Sand 


  1. Adams, A., & Mac Kenzie, I. R. (1998). Carbonate sediments and rocks under the microscope: A colour atlas. London: Manson Publishing.CrossRefGoogle Scholar
  2. Agashe, S. N., & Caulton, E. (2019). Pollen and spores: Applications with special emphasis on aerobiology and allergy. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  3. Aitken, M. J. (2013). Science-based dating in archaeology. London: Routledge.Google Scholar
  4. Andersen, S. T. (1970). The relative pollen productivity and pollen representation of north European trees, and correction factors for tree pollen spectra. Danmarks Geologiske Undersoegelse, 2(96), 1–99.Google Scholar
  5. Anthony, E. J., Marriner, N., & Morhange, C. (2014). Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth-Science Reviews, 139, 336–361.CrossRefGoogle Scholar
  6. Beltrame, C., Mozzi, P., Forti, A., Maritan, M., Rucco, A. A., Vavasori, A., et al. (2019). The Fifth-Century AD Riverine Barge of Santa Maria in Padovetere (Ferrara, Italy): A multidisciplinary approach to its environment and ship building techniques. Environmental Archaeology.
  7. Beug, H. J. (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München: Verlag Dr. Friedrich Pfeil.Google Scholar
  8. Birks, J. J. B., & Gordon, A. D. (1985). Numerical methods in quaternary pollen analysis. London: Academic Press.Google Scholar
  9. Booth, T. (2017). The rot sets. In: Low-powered microscopic investigation of taphonomic changes to bone microstructure and its application to funerary contexts. In D. Errickson & T. Thompson (Eds.), Human remains: Another dimension (pp. 7–28). London: Academic Press. Scholar
  10. Braconnot, H. (1829). Über sporopollenenine. Annales de Chimie Physique, 2, 42–57.Google Scholar
  11. Brewer, R. (1964). Fabric and mineral analysis of soils. New York: Wiley.Google Scholar
  12. Brewer, R. (1972). The basis of interpretation of soil micromorphological data. Geoderma, 8, 81–94.CrossRefGoogle Scholar
  13. Brewer, R. (1974). Some considerations concerning micromorphological terminology. In G. K. Rutherford (Ed.), Soil microscopy. Limestone: Kingston.Google Scholar
  14. Briner, J. P. (2011). Dating glacial landforms. In V. Singh, P. Singh, & U. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 175–185). New York: Geology Faculty Publications.CrossRefGoogle Scholar
  15. Brown, A. (1997). Alluvial geoarchaeology: Floodplain archaeology and environmental change (Cambridge manuals in archaeology). Cambridge: Cambridge University Press. Scholar
  16. Bryant Jr., V. M., Jones, J. G., & Mildenhall, D. C. (1990). Forensic palynology in the United States of America. Palynology, 14, 193–208.CrossRefGoogle Scholar
  17. Bullock, P., Federoff, N., Jonquerius, A., Stoops, G., & Tusina, T. (1985). Handbook for soil thin section description. Albrighton: Waine Research Publications.Google Scholar
  18. Butzer, K. W. (1982). Archaeology as human ecology: Method and theory for a contextual approach. New York: Cambridge University Press.CrossRefGoogle Scholar
  19. Campana, S. (2017). Drones in archaeology. State-of-the-art and future perspectives. Archaeological Prospection, 24(4), 275–296.CrossRefGoogle Scholar
  20. Campana, S., & Piro, S. (Eds.). (2008). Seeing the unseen. Geophysics and landscape archaeology. New York: CRC Press.Google Scholar
  21. Carter, S. P., & Davidson, D. A. (1998). An evaluation of the contribution of soil micromorphology to the study of ancient arable agriculture. Geoarchaeology, 13, 535–547.<535::AID-GEA1>3.0.CO;2-#CrossRefGoogle Scholar
  22. Celant, A., Magri, D., & Romana Stasolla, F. (2015). Collection of plant remains from archaeological contexts. In E. C. T. Yeung, C. Stasolla, M. J. Sumner, & B. Q. Huang (Eds.), Plant microtechniques and protocols (pp. 469–486). Cham: Springer. Scholar
  23. Cook, E. J., van Geel, B., van der Kaars, S., & van Arkel, J. (2011). A review of the use of non-pollen palynomorphs in palaeoecology with examples from Australia. Palynology, 35(2), 155–178. Scholar
  24. Cook, E. R., & Kairiukstis, L. A. (Eds.). (1990). Methods of dendrochronology: Applications in the environmental sciences. Dordrecth: Springer.Google Scholar
  25. Courty, M. A. (1992). Soil micromorphology in archaeology. Proceedings of the British Academy, 11, 39–59.Google Scholar
  26. Courty, M. A., Goldberg, P., & Macphail, R. (1989). Soils and micromorphology in archaeology. Cambridge: Cambridge University Press.Google Scholar
  27. Cugny, C., Mazier, F., & Galop, D. (2010). Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): The use of coprophilous fungi to reconstruct pastoral activity. Vegetation History and Archaeobotany, 19(5–6), 391–408.CrossRefGoogle Scholar
  28. Davidson, D. A., Carter, S. P., & Quine, T. A. (1992). An evaluation of micromorphology as an aid to archaeological interpretation. Geoarchaeology, 7(1), 55–65.CrossRefGoogle Scholar
  29. Davis, M. B. (1963). On the theory of pollen analysis. American Journal of Science, 261, 897–912.CrossRefGoogle Scholar
  30. Davis, M. B. (1969). Palynology and environmental history during the quaternary period. American Scientist, 57, 317–332.Google Scholar
  31. Dickinson, W. R. (1970). Interpreting detrital modes of graywacke and arkose. Journal of Sedimentary Petrology, 40, 695–707.Google Scholar
  32. Dickinson, W. R., & Rich, E. I. (1972). Petrologic intervals and petrofacies in the Great Valley sequence, Sacramento Valley, California. GSA Bulletin, 83(10), 3007–3024.[3007,PIAPIT]2.0.CO;2CrossRefGoogle Scholar
  33. Ducker, S., & Knox, R. (1985). Pollen and pollination: A historical review. Taxon, 34(3), 401–419. Scholar
  34. Eidt, R. C. (1977). Detection and examination of anthrosols by phosphate analysis. Science, 197, 1327–1333.CrossRefGoogle Scholar
  35. Eidt, R. C. (1984). Advances in abandoned settlement analysis. Milwaukee, WI: Cent. Lat. Am., Univ. Wisc.Google Scholar
  36. Eidt, R. C. (1985). Theoretical and practical considerations in the analysis of anthrosols. In G. Rapp & J. Gifford (Eds.), Archaeological geology (pp. 155–190). New Haven, CT: Yale University Press.Google Scholar
  37. Erdtman, G. (1943). An introduction to pollen analysis. Waltham: Chronica Botanica Company.Google Scholar
  38. Erdtman, G. (1969). Handbook of palynology - an introduction to the study of pollen grains and spores. Copenhagen: Munksgaard.Google Scholar
  39. Erdtman, G. (1986). Pollen morphology and plant taxonomy: Angiosperms. Leiden: E.J. Brill.Google Scholar
  40. Erdtman, G., & Straka, H. (1961). Cormophyte spore classification. Geologiska Föreningen i Stockholm Förhandlingar, 83(1), 65–78. Scholar
  41. Fægri, K., & Iversen, J. (1989). In K. Fægri, P. E. Kaland, & K. Krzywinski (Eds.), Textbook of pollen analysis (4th ed.). New York: Wiley.Google Scholar
  42. Firbas, F. (1935). Die Vegetationsentwicklung des mitteleuropaischen Spatglazials. In Bibliotheca Botanica (p. 112). Göttingen: Vandenhoeck & Ruprech.Google Scholar
  43. Firbas, F. (1937). Der pollen analytische Nachweis des Getreidebaus. Z. Botan., 31, 447–479.Google Scholar
  44. Fuller, D. Q., & Lucas, L. (2014). Archaeobotany. In C. Smith (Ed.), Encyclopedia of global archaeology. New York: Springer.Google Scholar
  45. Garrison, E. (2003). Techniques in archaeological geology. Berlin: Springer.CrossRefGoogle Scholar
  46. Gazzi, P. (1966). Le arenarie del flysch sopracretaceo dell’Appennino modenese: Correlazioni con il Flysch di Monghidoro. Mineralogica Petrografica Acta, 12, 69–97.Google Scholar
  47. Gazzi, P., Zuffa, G. G., Gandolfi, G., & Paganelli, L. (1973). Provenienza e dispersione litoranea delle sabbie delle spiagge adriatiche fra le foci dell’Isonzo e del Foglia: Inquadramento regionale. Memorie della Societa Geologica Italiana, 12, 1–37.Google Scholar
  48. Goldberg, P. (1992). Micromorphology, soils and archaeological sites. In V. T. Holliday (Ed.), Soils in archaeology: Landscape evolution and human occupation. Washington, DC: Smithsonian Institution Press.Google Scholar
  49. Goldberg, P. (2000). Micromorphology and site formation at Die Kelders cave I, South Africa. Journal of Human Evolution, 38(1), 43–90.CrossRefGoogle Scholar
  50. Goldberg, P., & Mac Phail, R. I. (2006). Practical and theoretical geoarchaeology. Malden, MA: Blackwell Publishing.Google Scholar
  51. Grew, N. (1682). The anatomy of plants, with an idea of a philosophical history of plants, and several other lectures, read before the Royal Society. London: W. Rawlins.Google Scholar
  52. Halbritter, H., Ulrich, S., Grímsson, F., Weber, M., Zetter, R., Hesse, M., et al. (2018). Illustrated pollen terminology. Cham: Springer. Scholar
  53. Hastorf, C. (1999). Recent research in paleoethnobotany. Journal of Archaeological Research, 7, 55–103. Scholar
  54. Hesse, M., Halbritter, H., Weber, M., Buchner, R., Frosch-Radivo, A., Ulrich, S., et al. (2009). Pollen terminology: An illustrated handbook. Vienna: Springer.Google Scholar
  55. Hooke, R. (1665). Micrographia, or, some physiological descriptions of minute bodies made by magnifying glasses, with observations and inquiries thereupon. London: Jo. Martyn and Ja. Allestry.CrossRefGoogle Scholar
  56. Hyde, H. A., & Williams, D. A. (1944). The right word. Pollen Analysis Circular, 8, 6.Google Scholar
  57. Ingersoll, R. V. (1990). Actualistic sandstone petrofacies: Discriminating modern and ancient source rocks. Geology, 18(8), 733–736.CrossRefGoogle Scholar
  58. Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Research, 54, 103–116.Google Scholar
  59. Ingersoll, R. V., Kretchmer, A. G., & Valles, P. K. (1993). The effect of sampling scale on actualistic sandstone petrofacies. Sedimentology, 40(5), 937–953.CrossRefGoogle Scholar
  60. Ingham, J. P. (2011). Petrography of geomaterials: A review. Quarterly Journal of Engineering Geology and Hydrogeology, 44(4), 457–467.CrossRefGoogle Scholar
  61. Itkin, D., Goldfus, H., & Monger, H. C. (2016). Human induced calcretisation in anthropogenic soils and sediments: Field observations and micromorphology in a Mediterranean climatic zone, Israel. Catena, 146, 48–61. Scholar
  62. Jacoby, G. C. (2000). Dendrochronology. Quaternary Geochronology: Methods and Applications, 4, 11–20.Google Scholar
  63. Jansonius, J., & McGregor, D. C. (Eds.). (1996). Palynology: Volume 1, 2 and 3. Salt Lake City, UT: American Association of Stratigraphic Palynologists Foundation/Publishers Press.Google Scholar
  64. John, J. F. (1814). Über Befruchtenstaube nebst eine analyse des Tulpen pollens. Journal für Chemie und Physik, 12, 244–261.Google Scholar
  65. Johnson, W. C., & Fredlund, G. G. (1985). A procedure for extracting palynomorphs (Pollen and Spores) from clastic sediments. Transactions of the Kansas Academy of Science, 88(1/2), 51–58.CrossRefGoogle Scholar
  66. Jones, G. D., Bryant, V. M., Jr., Lieux, M. H., Jones, S. D., & Lingren, P. D. (1995). Pollen of the southeastern United States: With emphasis on melissopalynology and entomopalynology. Houston: AASP Contributions Series, 30.Google Scholar
  67. Karkanas, P., & Goldberg, P. (2018). Reconstructing archaeological sites: Understanding the geoarchaeological matrix. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  68. Kelly, R. L. & Thomas, D. H. (2014). Archaeology: Down to Earth. Wardsworth Cengage Learning.Google Scholar
  69. Kooyman, B. (2015). Phytoliths: Preparation and archaeological extraction. In E. C. T. Yeung, C. Stasolla, M. J. Sumner, & B. Q. Huang (Eds.), Plant microtechniques and protocols (pp. 507–524). Scholar
  70. Kremp, G. O. W. (1965). Morphologic Encyclopedia of Palynology. An international collection of definitions and illustrations of spores and pollen. Tucson, AZ: The University of Arizona Press.Google Scholar
  71. Krzywinski, K., Fægri, K., Iversen, J., & Kaland, P. E. (2000). Textbook of pollen analysis. Caldwell, NJ: The Blackburn Press.Google Scholar
  72. Kubiena, W. (1938). Micropedology. Ames, IA: Collegiate Press.Google Scholar
  73. Kumari, M., Singh Sankhla, M., Nandan, M., Sharma, K., & Kumar, R. (2017). Role of forensic palynology in crime investigation. IJournals: International Journal of Social Relevance & Concern, 5(3), 1–13.Google Scholar
  74. Laine, A., Gauthier, E., Garcia, J. P., Petit, C., Cruz, F., & Richard, H. (2010). A three-thousand-year history of vegetation and human impact in Burgundy (France) reconstructed from pollen and non-pollen palynomophs analysis. Comptes Rendus Biologies, 333(11–12), 850–857.CrossRefGoogle Scholar
  75. Linnaeus, C. (1750). Sponsalia plantarum. J.G. Wahlbom, Stockholm. Facs. Edition, Rediviva, (19).Google Scholar
  76. Mac Kenzie, W. S., Adams, A. E., & Brodie, K. H. (2017). Rocks and minerals in thin section: A colour atlas. London: CRC Press.Google Scholar
  77. Macphail, R. I. (1998). A reply to Carter and Davidson’s “an evaluation of the contribution of soil micromorphology to the study of ancient arable agriculture”. Geoarchaeology, 13, 549–564.<549::AID-GEA2>3.0.CO;2-ZCrossRefGoogle Scholar
  78. Macphail, R. I., Courty, M., & Goldberg, P. (1990). Soil and micromorphology in archaeology. Endeavour, 14, 163–171. Scholar
  79. Macphail, R. I., & Goldberg, P. (2018). Applied Soils and Micromorphology in Archaeology. Cambridge: Cambridge University Press.Google Scholar
  80. Madella, M., Lancelotti, C., & Savard, M. (2014). Ancient plants and people: Contemporary trends in archaeobotany. Tucson, AZ: University of Arizona Press.Google Scholar
  81. Malpighi, M. (1675 and 1679). Die Anatomie der Pflanzen. I und II Theil. London 1675 Bearbeitet von M. Mobius. Ostwald’s Klassiker Nr. 120. Engelmann, Leipzig (1901).Google Scholar
  82. Mange, M. A., & Maurer, H. (2012). Heavy minerals in colour. Berlin: Springer.Google Scholar
  83. Manten, A. A. (1966). Half a century of modern palynology. Earth-Science Reviews, 2, 277–316.CrossRefGoogle Scholar
  84. Marquer, L. (2010). From microcharcoal to macrocharcoal: Reconstruction of the “wood charcoal” signature in paleolithic archaeological contexts. P@lethnologie, 2, 105–115.Google Scholar
  85. Marston, J. M., D’Alpoim Guedes, J., & Warinner, C. (Eds.). (2014). Method and theory in paleoethnobotany. Boulder, CO: University Press of Colorado.Google Scholar
  86. Menzies, J., van der Meer, J. J. M., Domack, E., & Wellner, J. S. (2010). Micromorphology: As a tool in the detection, analyses and interpretation of (glacial) sediments and man-made materials. Proceedings of the Geologists’ Association, 121(3), 281–292. Scholar
  87. Mercuri, A. M., Accorsi, C., & Bandini Mazzanti, M. (2002). The long history of Cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Vegetion History and Archaeobotany, 11, 263–276. Scholar
  88. Mercuri, A. M., Allevato, E., Arobba, D., Bandini Mazzanti, M., Bosi, G., Caramiello, R., et al. (2015). Pollen and macroremains from Holocene archaeological sites: A dataset for the understanding of the bio-cultural diversity of the Italian landscape. Review of Palaeobotany and Palynology, 218, 250–266. Scholar
  89. Miola, A. (2012). Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972–2011). Review of Palaeobotany and Palynology, 186, 142–161.CrossRefGoogle Scholar
  90. Miola, A., Favaretto, S., Sostizzo, I., Valentini, G., & Asioli, A. (2010). Holocene salt marsh plant communities in the North Adriatic coastal plain (Italy) as reflected by pollen, non-pollen palynomorphs and plant macrofossil analyses. Vegetation history and archaeobotany, 19(5–6), 513–529.Google Scholar
  91. Mooney, S., & Tinner, W. (2011). The analysis of charcoal in peat and organic sediments. Mires and Peat, 7, 1–18.Google Scholar
  92. Moore, P. D., Webb, J. A., & Collison, M. E. (1991). Pollen analysis. Blackwell Scientific Publications.Google Scholar
  93. Mücher, H. J., & Morozova, T. D. (1983). The application of soil micromorphology in quaternary geology. In P. Bullock & C. P. Miuphy (Eds.), Soil micromorphology (Vol. 1, pp. 151–194). Berkhamsted: A.B. Academic Publishers.Google Scholar
  94. Muir, M. D., & Sarjeant, W. A. S. (1977). Palynology, part I and II. Stroudsburg, PA: Dowden, Hutchinson & Ross.Google Scholar
  95. Nicosia, C., & Stoops, G. (Eds.). (2017). Archaeological soil and sediment micromorphology. Hoboken, NJ: Wiley.Google Scholar
  96. Nimis, P. L., Scheidegger, C., & Wolseley, P. A. (2002). Monitoring with lichens—monitoring lichens. In NATO science series, IV. Earth and environmental science (Vol. 7). Dordrecht: Springer.Google Scholar
  97. Oeggl, K. (2009). The significance of the Tyrolean Iceman for the archaeobotany of Central Europe. Vegetation History and Archaeobotany, 18(1), 1–11.CrossRefGoogle Scholar
  98. Pearsall, D. M. (2016). Paleoethnobotany: A handbook of procedures. New York: Routledge. Scholar
  99. Pettijohn, F. J., Potter P. E. & Siever R. (1972). Sand and Sandstone. New York: Springer.Google Scholar
  100. Pichler, H., & Schmitt-Riegraf, C. (1997). Rock-forming minerals in thin section. London: Chapman & Hall.CrossRefGoogle Scholar
  101. Pichler, S. L., Pümpin, C., Brönnimann, D., & Rentzel, P. (2014). Life in the proto-urban style: The identification of parasite eggs in micromorphological thin sections from the Basel-Gasfabrik Late Iron Age settlement, Switzerland. Journal of Archaeological Science, 43, 55–65. Scholar
  102. Pidwirny, M. (2006). Erosion and deposition. Fundamentals of physical geography (2nd Ed.). Retrieved December 12, 2019, from
  103. Pini, R., Bertini, A., Martinetto, E., & Vassio, E. (2014). The pleistocene flora of northern Italy. In Palaeobotany of Italy (Vol. 9, pp. 290–307). Bolzano: Publication of the Museum of Nature South Tyrol.Google Scholar
  104. Piovan, S., Mozzi, P., & Stefani, C. (2010). Bronze age paleohydrography of the southern Venetian Plain. Geoarchaeology, 25, 6–35. Scholar
  105. Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists. Lanham: Altamira Press.Google Scholar
  106. Ponnuchamy, R., Bonhomme, V., Prasad, S., Das, L., Patel, P., Gaucherel, C., et al. (2014). Honey pollen: Using melissopalynology to understand foraging preferences of bees in tropical South India. PLoS One, 9(7), e101618. Scholar
  107. Pound, M., Dalgleish, A., McCoy, J., & Partington, J. (2018). Melissopalynology of honey from Ponteland, UK, shows the role of Brassica napus in supporting honey production in a suburban to rural setting. Palynology, 42(3), 400–405. Scholar
  108. Punt, W., & Clarke, G. C. S. (1984). The Northwest European Pollen Flora (Vol. 4). Amsterdam: Elsevier.Google Scholar
  109. Punt, W., Hoen, P. P., Blackmore, S., Nilsson, S., & Le Thomas, A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143(1–2), 1–81.CrossRefGoogle Scholar
  110. Rapp Jr., G. (1987). Geoarcheology. Annual Review of Earth and Planetary Sciences, 15, 97–113.CrossRefGoogle Scholar
  111. Reedy, C. L. (2008). Thin-section petrography of stone and ceramic cultural materials. London: Archetype.Google Scholar
  112. Reinsch, P. F. (1884). Micro-palaeophytologia: Formationis carboniferae. Erlangae: Redemptio: Auctoris et apud T. Krische.Google Scholar
  113. Renfrew, J. M. (1973). Palaeoethnobotany. The prehistoric food plants of the Near East and Europe. New York: Columbia University Press.Google Scholar
  114. Schoonen, M. A. A. (2004). Mechanisms of sedimentary pyrite formation. In J. P. Amend, K. J. Edwards, & T. W. Lyons (Eds.), Sulfur biogeochemistry - Past and present (Geological Society of America Special Paper) (Vol. 379, pp. 117–134). Boulder, CO: Geological Society of America.Google Scholar
  115. Seppä, H. (2013). Pollen analysis, principles. In S. A. Elias (Ed.), The encyclopedia of quaternary science (Vol. 3, pp. 794–804). Amsterdam: Elsevier.CrossRefGoogle Scholar
  116. Siart, C., Forbriger, M., & Bubenzer, O. (Eds.). (2017). Digital geoarchaeology. New techniques for interdisciplinary human-environmental research. Cham: Springer.Google Scholar
  117. Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). Washington, D.C.: USDA-Natural Resources Conservation Service.Google Scholar
  118. Sorby, H. C. (1882). Preparation of transparent sections of rocks and minerals. The Northern Microscopist, 2, 101–104.Google Scholar
  119. Speer, J. H. (2010). Fundamentals of tree-ring research. Tucson, AZ: University of Arizona Press.Google Scholar
  120. Stockmarr, J. (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores, 13, 615–622.Google Scholar
  121. Stoops, G., Marcelino, V., & Mees, F. (Eds.). (2018). Interpretation of micromorphological features of soils and regoliths (2nd ed.). Oxford: Elsevier.Google Scholar
  122. Taylor, E. L., Taylor, T. N., & Krings, M. (2009). Paleobotany: The biology and evolution of fossil plants. London: Academic Press.Google Scholar
  123. Trask, P. D. (1932). Origin and environment of source sediments of petroleum. Houston, TX: Gulf Publishing.Google Scholar
  124. Tunno, I., & Mensing, S. A. (2017). The value of non-pollen palynomorphs in interpreting paleoecological change in the Great Basin (Nevada, USA). Quaternary Research, 87(3), 529–543.CrossRefGoogle Scholar
  125. USDA, (1988). Soil survey of Orangeburg County, South Carolina. Washington, D.C.: US Department of Agriculture, Soil and Conservation Center.Google Scholar
  126. Van der Meer, J. J. M. (1987). Micromorphology of glacial sediments as a tool in distinguishing genetic varieties of till. In Geological Survey of Finland Special Paper (Vol. 3, pp. 77–89). Espoo: Geological Survey of Finland.Google Scholar
  127. Van Geel, B. (2002). Non-Pollen Palynomorphs. In J. P. Smol, H. J. B. Birks, W. M. Last, R. S. Bradley, & K. Alverson (Eds.), Tracking environmental change using lake sediments. Developments in paleoenvironmental research (Vol. 3). Dordrecht: Kluwer Academic Publishers.Google Scholar
  128. Veeken, P. C. (2006). Seismic stratigraphy, basin analysis and reservoir characterization (Vol. 37). San Diego, CA: Elsevier.Google Scholar
  129. Von Post, L. (1916). Einige südschwedische Quellmoore. Bulletin of the Geological Institution of the University of Upsala, 15, 219–278.Google Scholar
  130. Walker, M. (2005). Quaternary dating methods. Chichester: Wiley.Google Scholar
  131. Ward, L. F. (1885). Sketch of paleobotany. Washington, DC: Government Printing Office.Google Scholar
  132. Waters, M. (1991). The geoarchaeology of gullies and arroyos in Southern Arizona. Journal of Field Archaeology, 18(2), 141–159. Scholar
  133. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.CrossRefGoogle Scholar
  134. Wodehouse, R. P. (1935). Pollen grains. New York: McGraw-Hill Book Company.Google Scholar
  135. Zetzsche, F., & Kalin, O. (1928). Untersuchungen iiber die Membrm der Sporen and Pollen. Helvetica Chimica Acta, 14, 58–76.Google Scholar
  136. Zetzsche, F., Kalt, P., Leichti, J., & Ziegler, E. (1931). Zur Konstitution des Lycopodiumsporonins des Tasmanins und des Lange-Sporonins. Journal für Praktische Chemie, 148, 67–84.Google Scholar
  137. Zohary, D., & Hopf, M. (2000). Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe and the Nile Valley (No. Ed. 3). Oxford: Oxford University Press.Google Scholar
  138. Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of plants in the old world: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford: Oxford University Press.CrossRefGoogle Scholar
  139. Zuffa, G. G. (1980). Hybrid arenites: Their composition and classification. Journal of Sedimentary Research, 50, 21–29.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Silvia Elena Piovan
    • 1
  1. 1.Department of Historical and Geographic Sciences and the Ancient WorldUniversity of PadovaPadovaItaly

Personalised recommendations