Advertisement

A Short Note on Spanning Cactus Problem of Petersen Graph

  • Chinmay DebnathEmail author
  • Alak Kumar Datta
Conference paper
  • 82 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)

Abstract

We study the spanning cactus problem on Petersen graph. Whether there exist a spanning cactus or not in a general graph is an intractable problem. The computational complexity of the algorithm for finding the minimum spanning cactus in a general graph is also NP- complete. In this paper we present a result which states that there does not exist any spanning cactus when the graph under consideration is a Petersen graph.

Keywords

Cactus Minimum spanning cactus Minimum spanning tree Petersen graph NP-completeness 

References

  1. 1.
    West, D.B.: Introduction to Graph Theory, PHI Learning Pvt. Ltd.Google Scholar
  2. 2.
    Harary, Graph Theory, Narosa Publishing HouseGoogle Scholar
  3. 3.
    Datta, A.K., Debnath, C.: Spanning cactus: complexity and extensions. Discret. Appl. Math. 233, 19–28 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Datta, A.K.: Approximate spanning cactus. Inf. Process. Lett. 115(11), 828–832 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Debnath, C., Datta, A.K.: Spanning Cactus and spanning cactus extension on outerplanar graphs, ManuscriptsGoogle Scholar
  6. 6.
    Debnath, C., Datta, A.K.: Minimum Spanning Cactus Problem on Halin graphs, ManuscriptsGoogle Scholar
  7. 7.
    Deo, Graph Theory, Prentice Hall of IndiaGoogle Scholar
  8. 8.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)CrossRefGoogle Scholar
  9. 9.
    Palbom, A.: Complexity of the directed spanning cactus problem. Discret. Appl. Math. 146, 81–91 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dinits, E.A., Karzanov, A.V., Lomonosov, M.V.: On the structure of a family of minimal weighted cuts in graphs. In: Fridman, A.A. (ed.) Studies in Discrete Mathematics, Nauka, Moskva, pp. 290–306 (1976). (in Russian)Google Scholar
  11. 11.
    Aho, Hopcroft, Ullman: The Design and Analysis of Computer Algorithms, Pearson EducationGoogle Scholar
  12. 12.
    Gutin, G., Punnen, A.P.: The Travelling Salesman Problem and its Variations. Kluwer, Dordrecht (2002)zbMATHGoogle Scholar
  13. 13.
    Lawler, E.: Combinatorial Optimization: Networks and Matroids, Holt, Rinehert and Winston, New York (1976)Google Scholar
  14. 14.
    Das, K., Pal, M.: An optimal algorithm to find maximum and minimum height spanning trees on cactus graphs. Adv. Model. Optim. 10(1), 121–134 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Maheshwari, A., Zeh, N.: External memory algorithms for outerplanar graphs. In: Proceedings of the 10th International Symposium on Algorithms and Computation. LNCS, vol. 1741, pp. 307–316. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Fleischer, L.: Building chain and cactus representations of all minimum cuts from Hao-Orlin in the same asymptotic run time. J. Algorithms 33, 51–72 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kabadi, S.N., Punnen, A.P.: Spanning cactus of a graph: existence, extension, optimization, and approximation. Discret. Appl. Math. 161, 167–175 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center problems in cactus networks. Theor. Comput. Sci. 378, 237–252 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Paten, B., Diekhans, M., Earl, D., John, J.S.T., Ma, J., Suh, B., Haussler, D.: Cactus graphs for genome comparisons. J. Comput. Biol. 18, 469–481 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer and System SciencesVisva-Bharati UniversitySantiniketanIndia

Personalised recommendations