Advertisement

The Review of Studies on Scheffler Solar Reflectors

  • Qamar Ul IslamEmail author
  • Fatemeh Khozaei
Conference paper
  • 78 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)

Abstract

Scheffler solar reflector has been used internationally more than two decades. invented by Wolfgang Scheffler. This collector harvests the solar energy and has a fixed focal point and sun tracking system. the current study aims to conduct a exhaustive review on Scheffler solar collectors and its implications. Scheffler fixed focus concentrators, Parabolic Scheffler reflectors, Techniques used in Scheffler, Applications, Concentrated Solar Power (CSP), Concentrated Solar Technologies (CST), and Design Factors of Scheffler are areas this study focus.

Keywords

Scheffler dish Parabolic Scheffler reflectors Concentrated Solar Power (CSP) Concentrated Solar Technologies (CST) Design Factors Techniques 

References

  1. 1.
    Alarcón, J.A., Hortúa, J.E., Lopez, A.: Design and construction of a solar collector parabolic dish for rural zones in Colombia. Tecciencia 7(14), 14–22 (2013)CrossRefGoogle Scholar
  2. 2.
    Chandrashekara, M., Yadav, A.J.: Experimental study of exfoliated graphite solar thermal coating on a receiver with a Scheffler dish and latent heat storage for desalination. Sol. Energy 151, 129–145 (2017)CrossRefGoogle Scholar
  3. 3.
    Chandrashekara, M., Yadav, A.J.: An experimental study of the effect of exfoliated graphite solar coating with a sensible heat storage and Scheffler dish for desalination. Appl. Therm. Eng. 120, 101–115 (2017)Google Scholar
  4. 4.
    Chandak, A., Somani, S.K.: Design of multistage evaporators for integrating with Scheffler solar concentrators for food processing applications. In: Proceedings of International Solar Food Processing Conference (2009)Google Scholar
  5. 5.
    Zang, C., Li, B., Zheng, F., Li, A.: A structural design and analysis of the dish solar thermal power system. In: 2nd International Energy Conversion Engineering Conference (2004)Google Scholar
  6. 6.
    Christoph, M.: Solar community bakeries on the Argentinean Altiplano. In: Proceedings of International Solar Food Processing Conference (2009)Google Scholar
  7. 7.
    Dafle, V.R., Shinde, N.N.: Design, development and performance evaluation of concentrating monoaxial Scheffler technology for water heating and low temperature industrial steam application. Int. J. Eng. Res. Appl. 6, 848–852 (2012)Google Scholar
  8. 8.
    Desale, D.C., Jain, S.C., Sharma, P.K.: Performance analysis of Scheffler reflector using approximate generalized model. Int. J. Emerg. Trends Eng. Dev. 4(6), 242–253 (2014)Google Scholar
  9. 9.
    Dube, A.: Fuzzy logic modeling of Scheffler solar water collector. M.Tech. Dissertation, Birla Institute of Technology Mesra, Ranchi, India (2016)Google Scholar
  10. 10.
    Hafez, A.Z., Soliman, A., El-Metwally, K.A., Ismail, I.M.: Tilt and azimuth angles in solar energy applications – a review. Renew. Sustain. Energy Rev. 77(C), 147–168 (2017)CrossRefGoogle Scholar
  11. 11.
    Hartenstine, J.P.D.: Development of a solar and gas-fired heat pipe receiver for the Cummins power generation 7.5 kWe dish/Stirling system. In: Intersociety Energy Conversion Engineering Conference (1994)Google Scholar
  12. 12.
    Herrmann, U., Kearney, D.W.: Survey of thermal energy storage for parabolic trough power plants. J. Sol. Energy Eng. 124(2), 145–152 (2002)CrossRefGoogle Scholar
  13. 13.
    Indora, S., Kandpal, T.C.: Institutional and community solar cooking in India using SK-23 and Scheffler solar cookers: a financial appraisal. Renewable Energy 120, 501–551 (2018)CrossRefGoogle Scholar
  14. 14.
    Kalidasan, B.T., Srinivas, T.T., Shankar, R.: Experimental study on power generation using biomass based and solar based Brayton cycles. ARPN J. Eng. Appl. Sci. 10(9), 3987–3990 (2015)Google Scholar
  15. 15.
    Kleih, J.: Dish-stirling test facility. Sol. Energy Mater. 24(1), 231–237 (1991)CrossRefGoogle Scholar
  16. 16.
    Kumar, A., Prakash, O., Kaviti, A.K.: A comprehensive review of Scheffler solar collector. Renew. Sustain. Energy Rev. 77, 890–898 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Choi, S.S., Yang, C.: An average-value model of kinematic Stirling engine for the study of variable-speed operations of dish-stirling solar-thermal generating system. In: 11th IEEE International Conference on Control & Automation (ICCA) (2014)Google Scholar
  18. 18.
    Moreno, J., Rawlinson, S., Andraka, C., Mehos, M., Bohn, M.S., Corey, J.: Dish/Stirling hybrid-receiver sub-scale tests and full-scale design. SAE Technical Paper (1999)Google Scholar
  19. 19.
    Nepveu, F., et al.: Thermal model of a dish/Stirling systems. Sol. Energy 83(1), 81–89 (2009)CrossRefGoogle Scholar
  20. 20.
    Otte, P.: PA (new) cultural turn toward solar cooking an evidence from six case studies across India and Burkina Faso. Energy Res. Soc. Sci. 2, 49–58 (2014)CrossRefGoogle Scholar
  21. 21.
    Patil, R.J., Awari, G.K., Singh, M.P.: Comparison of performance analysis of Scheffler reflector and model formulation. Indian J. Sci. Technol. 4(10), 1335–1339 (2011)Google Scholar
  22. 22.
    Patil, J.: Design, fabrication and analysis of Scheffler reflector. Int. Eng. Res. J. 2, 2842–2844 (2015)Google Scholar
  23. 23.
    Panchal, H., Patel, J., Parmar, K., Patel, M.: Different applications of Scheffler reflector for renewable energy: a comprehensive review. Int. J. Ambient Energy 25, 1–13 (2018)Google Scholar
  24. 24.
    Phate, M.R., Gadkari, D.M., Avachat, S.S., Tajne, A.D.: Experimental analysis of 2.7 m2 Scheffler reflector and formulation of a model. Int. J. Eng. Trends Technol. 12(1), 1–5 (2014)CrossRefGoogle Scholar
  25. 25.
    Poullikkas, A., Kourtis, G., Hadjipaschalis, I.: Parametric comparative study for the installation of solar dish technologies in Cyprus. In: Power Generation, Transmission, Distribution and Energy Conversion 7th Mediterranean Conference and Exhibition (2010)Google Scholar
  26. 26.
    Ramos, C.: Design and construction of a parabolic dish in Mexico. In: International Solar Energy Conference, Portland, Oregon (2004)Google Scholar
  27. 27.
    Rathore, M.M., Warkhedkar, R.M.: Test standards for direct steam generating solar concentrators. J. Power Energy Eng. 3, 1–10 (2015)CrossRefGoogle Scholar
  28. 28.
    Ruelas, J., Palomerous, J., Pando, G.: Absorber design for a Scheffler-type solar concentrator. Appl. Energy 154, 35–39 (2015)CrossRefGoogle Scholar
  29. 29.
    Ruelas, J., Velazquez, N., Cerezo, J.: A mathematical model to develop a Scheffler-type solar concentrator coupled with a stirling engine. Appl. Energy 101, 253–260 (2013)CrossRefGoogle Scholar
  30. 30.
    Reddy, H.P., Rajashekher, P., Reddy, S.R.K.: Improvement on PV/Battery hybrid energy conversion system with grid. Int. J. Adv. Technol. Innov. Res. (IJATIR) 7(10), 1783–1790 (2015)Google Scholar
  31. 31.
    Sarker, A.J.: Design principle of Scheffler solar concentrator for independent parabolic curve length, aperture area and independent receiver position. Int. J. Eng. Res. Online 3(5), 437–442 (2015)Google Scholar
  32. 32.
    Scheffler, W., Bruecke, S., von Werdenbergstr, G.: Introduction to the revolutionary design of Scheffler reflectors. In: 2006 Solar Cookers and Food Processing International Conference, Granada, Spain, 12–16 July (2006)Google Scholar
  33. 33.
    Shinde, M.D., Bhasme, B.N., Rathore, R.M.: Experimental investigation of Scheffler solar concentrator in actual open environment. Int. J. Mod. Trends Eng. Res. 3(4), 1–5 (2016)Google Scholar
  34. 34.
    Sudhir, C.V., Feroz, S.S.: Potential of 16m2 solar Scheffler reflectors for thermal applications – experimental investigation. Int. J. Adv. Eng. Technol. 4(2), 42–46 (2016)Google Scholar
  35. 35.
    Snidvongs, S.: The structure and foundation design for small solar thermal dish stirling 10 kW power plant for Thailand softland and poor isolation nature. In: ASME International Solar Energy Conference, Solar Energy, pp. 729–735 (2005).  https://doi.org/10.1115/isec2005-76017
  36. 36.
    Wu, S.-Y., et al.: A parabolic dish/AMTEC solar thermal power system and its performance evaluation. Appl. Energy 87(2), 452–462 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering, School of Engineering and TechnologyBaba Ghulam Shah Badshah UniversityRajouriIndia
  2. 2.Department of Architecture, Kerman BranchIslamic Azad UniversityKermanIran

Personalised recommendations