Advertisement

A Comprehensive Study on GMU Protocol and Its Designing Impact in Cloud Computing

  • Ammlan GhoshEmail author
Conference paper
  • 74 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)

Abstract

Efficient replication technique is the fundamental building block of highly available fault-tolerant cloud system. There are various replication policies that can be implemented in Cloud architecture. Recently proposed cloud application, Cloud-TM, is a data centric middleware platform that aims to reduce operational and administrative cost of cloud application. Cloud-TM integrates GMU (Genuine Multiversion update-serializability partial data replication protocol) in its designing space to support genuine partial replication policy. GMU protocol maintains a tradeoff between consistency and performance. Its consistency semantics guarantees the correctness even in a complex workload. However there are various challenging issues in GMU protocol that are required to be discusses to open up future research scope. In this paper author intervenes in the various aspect of GMU protocol and find its research scope those have notable designing impact in Cloud Data platform.

Keywords

GMU protocol Partial data replication Non-blocking synchronization Distributed system Cloud computing 

References

  1. 1.
    Schiper, N., Sutra, P., Pedone, F.: P-store: genuine partial replication in wide area networks. In: Proceedings of the 2010 29th IEEE Symposium on Reliable Distributed Systems, SRDS 2010, pp. 214–224. IEEE Computer Society, Washington, D.C. (2010)Google Scholar
  2. 2.
    Peluso, S., Ruivo, P., Romano, P., Quaglia, F., Rodrigues, L.: When scalability meets consistency: genuine multiversion update-serializable partial data replication. In: 2012 IEEE 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 455–465, June 2012Google Scholar
  3. 3.
    Peluso, S., Romano, P., Quaglia, F.: Score: a scalable one-copy serializable partial replication protocol. In: Proceedings of the 13th International Middleware Conference, Middleware 2012, pp. 456–475. Springer, New York (2012)Google Scholar
  4. 4.
    Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions. Sci. Comput. Program. 63(2), 172–185 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Sciascia, D., Pedone, F., Junqueira, F.: Scalable deferred update replication. In: Proceedings of the 2012 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), DSN 2012, pp. 1–12. IEEE Computer Society, Washington, D.C. (2012)Google Scholar
  6. 6.
    Romano, P., Little, M., Quaglia, F., Rodrigues, L., Ziparo, V.: Cloud-TM: transactional, object-oriented, self-tuning cloud data store. Technical report 7. INESC-ID (2014)Google Scholar
  7. 7.
    Infinispan. http://www.infinispan.org. Adya, A.: Weak consistency: a generalized theory and optimistic implementations for distributed transactions. Ph.D. thesis. AAI0800775 (1999)
  8. 8.
    Bravo, M., Diegues, N., Zeng, J., Romano, P., Rodrigues, L.: On the use of clocks to enforce consistency in the cloud. IEEE Data Eng. Bull. 38(1), 18–31 (2015)Google Scholar
  9. 9.
    Pimentel, H., Romano, P., Peluso, S., Ruivo, P.: Enhancing locality via caching in the GMU protocol. Ph.D. diss., MSc thesis. Instituto Superior Técnico, Universidade Técnica de Lisboa (2013)Google Scholar
  10. 10.
    Silva, J.A., Lourenço, J.M., Paulino, H.: Boosting Locality in Multi-version Partial Data Replication (2014)Google Scholar
  11. 11.
    van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: a robust and scalable technology for distributed systems monitoring, management, and data mining. ACM Trans. Comput. Syst. 21(3), 164–206 (2003)CrossRefGoogle Scholar
  12. 12.
    Sciascia, D., Pedone, F., Junqueira, F.: Scalable deferred update replication. In: 2012 42nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 1–12. IEEE (2012)Google Scholar
  13. 13.
    Defago, X., Schiper, A., Urban, P.: Total order broadcast and multicast algorithms: taxonomy and survey. ACM Comput. Surv. 36(4), 372–421 (2004)CrossRefGoogle Scholar
  14. 14.
    Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach. Distrib. Parallel Databases 14(1), 71–98 (2003)CrossRefGoogle Scholar
  15. 15.
    Patino-Martínez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Scalable replication in database clusters. In: Proceedings of the 14th International Conference on Distributed Computing, pp. 315–329. Springer (2000)Google Scholar
  16. 16.
    Cecchet, E., Marguerite, J., Zwaenepole, W.: C-JDBC: flexible database clustering middleware. In: Proceedings of the USENIX Annual Technical Conference, Berkeley, CA, USA, p. 26 (2004)Google Scholar
  17. 17.
    Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: dependable distributed software transactional memory. In: 15th IEEE Pacific Rim International Symposium on Dependable Computing, PRDC 2009, pp. 307–313. IEEE (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Siliguri Institute of TechnologySiliguriIndia

Personalised recommendations