Advertisement

Similarity Solution for the Flow Behind an Exponential Shock Wave in a Rotational Axisymmetric Non-ideal Gas Under the Influence of Gravitational Field with Conductive and Radiative Heat Fluxes

  • P. K. SahuEmail author
Conference paper
  • 77 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 12)

Abstract

In the present paper, we investigated the propagation of exponential cylindrical shock wave in the presence of radiative as well as conductive heat fluxes under the influence of gravitational field. The medium is assumed to be non-ideal gas rotating about the axis of symmetry. The ambient medium has variable azimuthal as well as axial components of fluid velocity. It is manifested that the non-idealness parameter of the gas has decaying effect on the shock wave; however, presence of gravitational field has reverse effect on the shock strength.

Keywords

Shock wave Conductive and radiative heat flux Rotating medium Self-gravitating non-ideal gas 

References

  1. 1.
    Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)zbMATHGoogle Scholar
  2. 2.
    Carrus, P.A., Fox, P.A., Haas, F., Kopal, Z.: Astrophys. J. 113, 496 (1951)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Sahu, P.K.: Commun. Theor. Phys. 70(2), 197–208 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sahu, P.K.: Math. Methods Appl. Sci. 42, 4734–4746 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Nath, G.: Ain Shams Eng. J. 3(4), 393–401 (2012)CrossRefGoogle Scholar
  6. 6.
    Nath, G., Sahu, P.K.: Int. J. Appl. Comput. Math. 3(4), 2785–2801 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Levin, V.A., Skopina, G.A.: J. Appl. Mech. Tech. Phys. 45(4), 457–460 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Nath, G., Sahu, P.K.: Ain Shams Eng. J. 9, 1151–1159 (2018)CrossRefGoogle Scholar
  9. 9.
    Sahu, P.K.: Phys. Fluids 29(8), 086102 (2017)CrossRefGoogle Scholar
  10. 10.
    Marshak, R.E.: Phys. Fluids 1(1), 24–29 (1958)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elliott, L.A.: Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 258(1294), 287–301 (1960)Google Scholar
  12. 12.
    Wang, K.C.: J. Fluid Mech. 20(3), 447–455 (1964)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Helliwell, J.B.: J. Fluid Mech. 37(3), 497–512 (1969)CrossRefGoogle Scholar
  14. 14.
    NiCastro, J.R.A.J.: Phys. Fluids 13(8), 2000–2006 (1970)CrossRefGoogle Scholar
  15. 15.
    Ghoniem, A.F., Kamel, M.M., Berger, S., Oppenheim, A.K.: J. Fluid Mech. 117, 473–491 (1982)CrossRefGoogle Scholar
  16. 16.
    Anisimov, S.I., Spiner, O.M.: J. Appl. Math. Mech. 36(5), 883–887 (1972)CrossRefGoogle Scholar
  17. 17.
    Rao, M.P.R., Purohit, N.K.: Int. J. Eng. Sci. 14(1), 91–97 (1976)CrossRefGoogle Scholar
  18. 18.
    Wu, C.C., Roberts, P.H.: Phys. Rev. Lett. 70(22), 3424 (1993)CrossRefGoogle Scholar
  19. 19.
    Roberts, P.H., Wu, C.C.: Phys. Lett. A 213(1–2), 59–64 (1996)CrossRefGoogle Scholar
  20. 20.
    Rao, M.R., Ramana, B.V.: J. Math. Phys. Sci. 10, 465–476 (1976)Google Scholar
  21. 21.
    Nath, G., Sahu, P.K.: SpringerPlus 5(1), 1509 (2016)CrossRefGoogle Scholar
  22. 22.
    Vishwakarma, J.P., Nath, G.: Meccanica 42(4), 331–339 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gretler, W., Wehle, P.: Shock Waves 3(2), 95–104 (1993)CrossRefGoogle Scholar
  24. 24.
    Nath, G., Sahu, P.K., Chaurasia, S.: Chin. J. Phys. 58, 280–293 (2019)CrossRefGoogle Scholar
  25. 25.
    Nath, G., Sahu, P.K., Chaurasia, S.: Model. Meas. Control B 87(4), 236–243 (2018)CrossRefGoogle Scholar
  26. 26.
    Pomraning, G.C.: The Equations of Radiation Hydrodynamics. International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford (1973)Google Scholar
  27. 27.
    Laumbach, D.D., Probstein, R.F.: J. Fluid Mech. 40(4), 833–858 (1970)CrossRefGoogle Scholar
  28. 28.
    Zel’Dovich, Y.B., Raizer, Y.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Courier Corporation, Mineola (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsGovernment Shyama Prasad Mukharjee CollegeSitapurIndia

Personalised recommendations