Environmental Aspects of the Production and Use of Biofuels in Transport

  • Myroslav PanchukEmail author
  • Sviatoslav Kryshtopa
  • Aleksander Sładkowski
  • Andrii Panchuk
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 124)


The article presents a comprehensive analysis of the environmental aspects of the production and use of biofuels in transport. It is stated that the environmental impact occurs at all stages of production and processing of bioenergy raw materials. It is substantial during land use change and production intensification, and minimal greenhouse gas emissions are observed when lignocellulosic fuels are used. Life cycle analysis shows that battery electric vehicles have a better greenhouse gas saving than most biofuels. At the same time, a large-scale implementation of renewable energy sources is needed to reduce harmful emissions from electricity generation. It is established that the use of carbon-neutral synthetic biofuels is a promising way to achieve the complete decarbonisation of the transport sector.


Biofuels Greenhouse gases Emissions Life cycle analysis Battery electric vehicle 


  1. 1.
    Panchuk M, Kryshtopa S, Panchuk A, Kryshtopa L, Dolishnii B, Mandryk I, Sladkowski A (2019) Perspectives for torrefaction technology development and using in Ukraine. Inter J Ener Clean Env 20:113–134CrossRefGoogle Scholar
  2. 2.
    International Energy Agency (2016) Key world energy statistics. OECD, Paris.
  3. 3.
    Teske S, Dominish E, Ison N, Maras K (2016) 100% renewable energy for Australia—decarbonising Australia’s energy sector within one generation. Report prepared by ISF for GetUp! and Solar citizens, Mar 2016.
  4. 4.
    Ozturk M, Saba N, Altay V, Iqbal R, Hakeem KR, Jawaid M, Ibrahim FH (2017) Biomass and bioenergy: an overview of the development potential in Turkey and Malaysia. Renew Sustain Energy Rev 79:1285–1302CrossRefGoogle Scholar
  5. 5.
    Kryshtopa S, Panchuk M, Kozak F, Dolishnii B, Mykytii I, Hnyp M, Skalatska O (2018) Fuel economy raising of alternative fuel converted diesel engines. Eastern-Euro J Enterp Technol 4(8):6–13CrossRefGoogle Scholar
  6. 6.
    Kryshtopa S, Kryshtopa L, Melnyk V, Dolishnii B, Prunko I, Demianchuk Y (2017) Experimental research on diesel engine working on a mixture of diesel fuel and fusel oils. Transp Prob 12(2):53–63CrossRefGoogle Scholar
  7. 7.
    Lehtveer M, Brynolf S, Grahn M (2019) What future for electrofuels in transport? Analysis of cost competitiveness in global climate mitigation. Environ Sci Technol 53(3):1690–1697CrossRefGoogle Scholar
  8. 8.
    Cames M, Graichen J, Siemons A, Cook V (2015) Emission reduction targets for international aviation and shipping; Policy Department A for the Committee on Environment, Public Health and Food Safety (ENVI), European Parliament, Brussels.
  9. 9.
    Hsieh CC, Felby C (2017) Biofuels for the marine shipping sector. University of Copenhagen, IEA Bioenergy, Task 39.
  10. 10.
    Kryshtopa S, Panchuk M, Dolishnii B, Kryshtopa L, Hnyp M, Skalatska O (2018) Research into emissions of nitrogen oxides when convert the diesel engines to alternative fuels. Eastern-Euro J Enterp Technol 1(10):16–22CrossRefGoogle Scholar
  11. 11.
    Górski K, Sander P, Longwic R (2018) The assessment of ecological parameters of diesel engine supplied with mixtures of canola oil with n-hexane. IOP Conf Ser Mater Sci Eng 421(4):042025 (1–11)CrossRefGoogle Scholar
  12. 12.
    Juknelevičius R, Rimkus A, Pukalskas S, Matijošius J (2019) Research of performance and emission indicators of the compression-ignition engine powered by hydrogen—diesel mixtures. Int J Hydrogen Energy 44(20):10129–10138CrossRefGoogle Scholar
  13. 13.
    Schirone L, Pellitteri F (2017) Energy policies and sustainable management of energy sources. Sustainability 9(12):2321 (1–13)CrossRefGoogle Scholar
  14. 14.
    European Commission (2011) White paper—roadmap to a single European transport area—towards a competitive and resource efficient transport system. Brussels.
  15. 15.
    Zaharchuk V, Gritsuk I, Zaharchuk O, Golovan A (2018) The choice of a rational type of fuel for technological vehicles. In: SAE technical paper 2018-01-1759Google Scholar
  16. 16.
    Jankowski A, Sandel A, Sęczyk J, Siemińska-Jankowska B (2002) Some problems of improvement of fuel efficiency and emission in internal combustion engines. J KONES Intern Combust Engines 9(3–4):333–356Google Scholar
  17. 17.
    Reinhart TE (2015) Commercial mediumand heavy-duty truck fuel efficiency technology study—Report #1. (Report No. DOT HS 812 146). National Highway Traffic Safety Administration, Washington, DCGoogle Scholar
  18. 18.
    Fennell D, Herreros JM, Tsolakis A (2014) Improving gasoline direct injection (GDI) engine efficiency and emissions with hydrogen from exhaust gas fuel reforming. Int J Hydrogen Energy 39(10):5153–5162CrossRefGoogle Scholar
  19. 19.
    Ellinger R, Meitz K, Prenninger P, Salchenegger S, Salchenegger S, Brandstätter W (2001) Comparison of CO2 emission levels for internal combustion engine and fuel cell automotive propulsion systems. In: SAE technical paper 2001-01-3751Google Scholar
  20. 20.
    van Druten RM (2001) Transmission design of the zero inertia powertrain. Technische Universiteit Eindhoven, EindhovenGoogle Scholar
  21. 21.
    National Research Council (2008) Assessment of technologies for improving light-duty vehicle fuel economy: letter report. The National Academies Press, Washington, DC.
  22. 22.
    Gillespie TD (1992) Fundamentals of vehicle dynamic. In: SAE InternationalGoogle Scholar
  23. 23.
    Panchuk M, Shlapak L, Panchuk A, Szkodo M, Kiełczyński W (2016) Perspectives of use of nanocellulose in oil and gas industry. J Hydrocarbon Power Eng 3(2):79–84Google Scholar
  24. 24.
    Oliver-Borrachero B, Sánchez-Caballero S, Fenollar O, Sellés MA (2019) Natural-fiber-reinforced polymer composites for automotive parts manufacturing. Key Eng Mater 793:9–16CrossRefGoogle Scholar
  25. 25.
    Hussain F, Hojjaty M, Okamoto M (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575CrossRefGoogle Scholar
  26. 26.
    Lyne B (2013) Market prospects for nanocellulose. The Royal Institute of Technology, Alberta Biomaterials Development Centre, 12 Feb 2013.$Department/deptdocs.nsf/all/bt16408/$FILE/abdc-seminar-feb-12-2013-the-royal-institute-of-technology.pdf
  27. 27.
    Kurauchi T, Okada A, Nomura T, Nishio T et al. (1991) Nylon 6-clay hybrid—synthesis, properties and application to automotive timing belt cover. In: SAE technical paper 910584Google Scholar
  28. 28.
    Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotechnol 11:1026–1030CrossRefGoogle Scholar
  29. 29.
    AL-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354CrossRefGoogle Scholar
  30. 30.
    Ashori A (2008) Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol 99:4661–4667CrossRefGoogle Scholar
  31. 31.
    Carus M, Eder A, Dammer L, Korte H, Scholz L, Essel R, Breitmayer E, Barth M (2015) Wood-plastic composites (WPC) and natural fibre composites (NFC): European and global markets 2012 and future trends in automotive and construction. Nova-Institute, Hürth, GermanyGoogle Scholar
  32. 32.
    Influence on the low carbon car market from 2020–2030. In: Final report element energy, July 2011Google Scholar
  33. 33.
    King J (2007) The king review of low carbon cars—part 1: the potential for CO2 reduction. Crown, UKGoogle Scholar
  34. 34.
    Kousoulidou M, Ntziachristos L, Fontaras G, Martini G, Dilara P, Samaras Z (2012) Impact of biodiesel application at various blending ratios on passenger cars of different fueling technologies. Fuel 98:88–94CrossRefGoogle Scholar
  35. 35.
    DME Handbook (2006) Japan DME Forum Ohmsha Ltd., JapanGoogle Scholar
  36. 36.
    Saber M, Nakhshiniev B, Yoshikawa K (2016) A review of production and upgrading of algal bio-oil. Renew Sust Energ Rev 58:918–930CrossRefGoogle Scholar
  37. 37.
    Sang T, Zhu W (2011) China’s bioenergy potential. GCB Bioenergy 3:79–90CrossRefGoogle Scholar
  38. 38.
    Meier L, Perez R, Azocar L, Rivas M, Jeison D (2015) Photosyntetic CO2 uptake by microalgae: an attractive tool for biogas upganging. Biomass Bioenergy 73:102–109CrossRefGoogle Scholar
  39. 39.
    Macedo IC, Nassa AM, Cowie AL, Seabra JEA, Marelli L, Otto M, Wang MQ, Tyner WE (2015) Greenhouse gas emissions from bioenergy. Bioenergy Sustain Bridging Gaps SCOPE 72:582–617Google Scholar
  40. 40.
    Diaz-Chavez R, Morese MM, Colangeli M, Fallot A, de Moraes MAFD, Olényi S, Osseweijer P, Sibanda LM, Mapako M (2015) Social considerations. Bioenergy Sustain Bridging Gaps SCOPE 72:490–527Google Scholar
  41. 41.
    Lee JY, Featherstone A, JrRM Nayga, Han DB (2019) The long-run and short-run effects of ethanol production on US beef producers. Sustainability 11(6):1685CrossRefGoogle Scholar
  42. 42.
    The European forest sector outlook. Study II. 2010–2030. United Nations, Geneva, Sept 2011.
  43. 43.
    Panchuk M, Kryshtopa S, Shlapak L, Kryshtopa L, Panchuk A, Yarovyi V, Sładkowski A (2017) Main trend of biofuels production in Ukraine. Transp Prob 12(4):95–103Google Scholar
  44. 44.
  45. 45.
    Панчук МВ, Шлапак ЛС (2016) Аналіз перспектив розвитку виробництва та використання біогазу в Україні. Розвідка та розробка нафтових і газових родовищ 3(60):26–33 [In Ukrainian: Panchuk MV, Shlapak LS (2016) Analysis of prospects for development and using of biogas in Ukraine. Exploration and development of oil and gas deposits]Google Scholar
  46. 46.
    Europian Commission (2015) The impact of biofuels on transport and the environment, and their connection with agricultural development in Europe. Directorate General for the Internal Policies Policy Department B: Structural und Cohesion Policies—Transport and Tourism, Brussels.
  47. 47.
    Demirbas A (2007) The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Proc Technol 88:591–597CrossRefGoogle Scholar
  48. 48.
    Panchuk M, Kryshtopa S, Sładkowski A, Kryshtopa L, Klochko N, Romanushyn T, Panchuk A, Mandryk I (2019) Efficiency of production of motor biofuels for water and land transport. Naše More 66(3 Suppl):6–12CrossRefGoogle Scholar
  49. 49.
    Press release BTG: world’s first car ride on diesel fuel from wood residues (2013).
  50. 50.
    Freeman C et al (2013) Initial assessment of US refineries for purposes of potential bio-based oil insertions.
  51. 51.
    California Air Resources Board (2017) Co-processing of biogenic feedstocks in petroleum refineries, draft staff discussion paper.
  52. 52.
    de Resende Pinho A, de Almeida MBB, Leal Mendes F, Casavechia LC, Talmadge MS, Kinchin CM, Chum HL (2017) Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel 188:462–473CrossRefGoogle Scholar
  53. 53.
    Dexter J, Fu P (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864CrossRefGoogle Scholar
  54. 54.
    Tseng P, Leeb J, Frileyb P (2005) Hydrogen economy: opportunities and challenges. Energy 30(14):2703–2720CrossRefGoogle Scholar
  55. 55.
    Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185CrossRefGoogle Scholar
  56. 56.
    Isenstadt A, Lutsey NP (2017) Developing hydrogen fueling infrastructure for fuel cell vehicles: a status update. In: Technical report.
  57. 57.
    Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S et al (2010) Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyperaccumulates triacylglycerol. Metab Eng 12(4):387–391CrossRefGoogle Scholar
  58. 58.
    Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363CrossRefGoogle Scholar
  59. 59.
    Larson ED (2008) Bioful production technologies: status, prospects and implications for trade and development. In: Report No. UNCTAD/DITC/TED/2007/10, United Nations Conference on Trade and Development, New York, Geneva.
  60. 60.
    Clean cities alternative fuel price report. US Departament of Energy (2012).
  61. 61.
    Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renev Sustain Energ Rev 14:2596–2610CrossRefGoogle Scholar
  62. 62.
    Ajanovic A, Haas R (2010) Economic challenges for the future relevance of biofuls in transport in EU countries. Energy 35:3340–3348CrossRefGoogle Scholar
  63. 63.
    Kasturi D, Achlesh D, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69(C):114–122Google Scholar
  64. 64.
    Kalnes TN, Koers KP, Market T, Shonnard DR (2009) A technoeconomic and environmental life cycle comparison of green diesel to biodiesel and syndisel. Environ Prog Sustain Energy 28:111–120CrossRefGoogle Scholar
  65. 65.
    Fore SR, Porter P, Lasarus W (2011) Net energy balance of small-scale on farm biodiesel production from canola and soybean. Biomass Energy 5:2234–2242CrossRefGoogle Scholar
  66. 66.
    Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44(20):7975–7980CrossRefGoogle Scholar
  67. 67.
    Farrell A, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311(5760):506–508CrossRefGoogle Scholar
  68. 68.
    Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgae biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413CrossRefGoogle Scholar
  69. 69.
    Liu T, Huffman T, Kulshreshtha S, McConkey B, Du Y, Green M, Liu J, Shang J, Geng X (2017) Bioenergy production on marginal land in Canada: potential, economic feasibility, and greenhouse gas emissions impacts. Appl Energy 205:477–485CrossRefGoogle Scholar
  70. 70.
    Harris ZM, Spake R, Taylor G (2015) Land use change to bioenergy: a meta-analysis of soil carbon and GHG emissions. Biomass Bioenergy 82:27–39CrossRefGoogle Scholar
  71. 71.
    Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRefGoogle Scholar
  72. 72.
    Seabra JEA, Macedo IC, Chum HL, Faroni CE, Sarto CA (2011) Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioprod Biorefin 5:519–532CrossRefGoogle Scholar
  73. 73.
    Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess Gallasch S (2009) Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447CrossRefGoogle Scholar
  74. 74.
    Morey RV, Kaliyan N, Tiffani DG, Schmidt DR (2010) Acorn stover supply logistics system. Appl Eng Agr 26(3):455–461Google Scholar
  75. 75.
    Wang MQ, Han J, Haq Z, Tyner WE, Wu M, Elgowainy A (2011) Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenergy 35(5):1885–1896CrossRefGoogle Scholar
  76. 76.
    Hoekman SK, Broch A, Liu X (2018) Environmental implications of higher ethanol production and use in the US: a literature review. Part I—impacts on water, soil, and air quality. Renew Sustain Energy Rev 81:3140–3158CrossRefGoogle Scholar
  77. 77.
    Wu Y, Zhao F, Liu S, Wang L, Qiu L, Alexandrov G, Jothiprakash V (2018) Bioenergy production and environmental impacts. Geosci Lett 5:14CrossRefGoogle Scholar
  78. 78.
    Comprehensive Assessment of Water Management in Agriculture (2007) Water for food, water for life: a comprehensive assessment of water management in agriculture. International Water Management Institute, London, Earthscan, ColomboGoogle Scholar
  79. 79.
    de Fraiture C, Giordano M, Liao Y (2008) Biofuels and implications for agricultural water use: blue impacts of green energy. Water Policy 10(Suppl 1):67–81CrossRefGoogle Scholar
  80. 80.
    Wu M, Zhang Z, Chiu Y (2014) Life-cycle water quantity and water quality implications of biofuels. Curr Sustain Renew Energy Rep 1:3–10Google Scholar
  81. 81.
    Fontaras G, Skoulou V, Zanakis G, Zabaniotou A, Samaras Z (2012) Integrated environmental assessment of energy crops for biofuel and energy production in Greece. Renew Energy 43:201–209CrossRefGoogle Scholar
  82. 82.
    Moreira I, Bastos AO, Scapinelo C, Fraga AL, Kutschenko M (2007) Different types of pearl millets (Pennisetum glaucum (L.) R. Brown) on growing-finishing pigs feeding. Ciencia Rural 37(2):495–501CrossRefGoogle Scholar
  83. 83.
    Hill GM, Phatak SC, Mullinix BG (2006) Pigeon pea digestibility and utilization by growing beef calves. In: Proceedings of Southern Association of Agricultural Scientists Management, Orlando FL, 4–8 Feb 2006Google Scholar
  84. 84.
    Qin Z, Zhuang Q, Cai X, He Y, Huang Y, Jiang D, Lin E, Liu Y, Tang Y, Wang MQ (2018) Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renew Sustain Energy Rev 82:2387–2400CrossRefGoogle Scholar
  85. 85.
    Blanco-Canqui H, Wortmann C (2017) Crop residue removal and soil erosion by wind. J Soil Water Conserv 72(5):97A–104ACrossRefGoogle Scholar
  86. 86.
    Doornbosch R, Steenblik R (2007) Biofuels: is the cure worse than the disease? In: Technical report. OECDGoogle Scholar
  87. 87.
    Palmer C, Engel S (2008) For better or for worse? Local impacts of the decentralization of Indonesia’s forest sector. World Dev 35(12):2131–2149CrossRefGoogle Scholar
  88. 88.
    Srinivas Reddy K, Kumar M, Maruthi V, Umesha B, Nageswar Rao CVK (2015) Dynamics of well irrigation systems and CO2 emissions in different agroecosystems of South Central India. Curr Sci 108(11):2063–2070Google Scholar
  89. 89.
    Tilman D, Hill JD, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314(5805):1598–1600CrossRefGoogle Scholar
  90. 90.
    Miyake S, Smith C, Peterson A, McAlpine C, Renouf M, Waters D (2015) Environmental implications of using ‘underutilised agricultural land’ for future bioenergy crop production. Agric Syst 139:180–195CrossRefGoogle Scholar
  91. 91.
    Dale V, Kline K, Wiens J, Fargione J (2010) Biofuels: implications for land use and biodiversity. In: Biofuels and sustainability reports.
  92. 92.
    Azar C, Larson E (2000) Bioenergy and land-use competition in the Northeast of Brazil: a case study in the Northeast of Brazil. Energy Sustain Dev 4:64–72CrossRefGoogle Scholar
  93. 93.
    Zah R, Boeni H, Gauch M, Hischier R, Lehmann M, Waeger P (2007) Life cycle assessment of energy products: environmental impact assessment of biofuels. Swiss Federal Institute for Materials Science and TechnologyGoogle Scholar
  94. 94.
    Joyce M (2003) Developments in US alternative fuel markets. Energy Information AdministrationGoogle Scholar
  95. 95.
    Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India. Need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29(1):12–24CrossRefGoogle Scholar
  96. 96.
    Kampman B, Verbeek R, van Grinsven A, van Mensch P, Croezen H, Patuleia A (2013) Bringing biofuels on the market—options to increase EU biofuels volumes beyond the current blending limits. In: Report number 13.4567.46Google Scholar
  97. 97.
    Thomas CE, James BD, Lomax FD, Kuhn IF (1998) Integrated analysis of hydrogen passenger vehicle transportation pathways. United StatesGoogle Scholar
  98. 98.
    Hill J, Polasky S, Nelson E, Tilman D, Huo H, Ludwig L, Neumann J, Zheng HC, Bonta D (2009) Climate change and health costs of air emissions from biofuels and gasoline. Proc Natl Acad Sci USA 106(6):2077–2082CrossRefGoogle Scholar
  99. 99.
    Kusiima JM, Powers SE (2010) Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks. Energy Policy 38(6):2785–2796CrossRefGoogle Scholar
  100. 100.
    National Research Council (2011) Renewable fuel standard: potential economic and environmental effects of US Biofuel Policy. The National Academies Press, Washington, DCGoogle Scholar
  101. 101.
    Morris RE, Jia Y (2003) Impact of biodiesel fuels on air quality and human health: Task 4 Report NREL/SR-540-33797.
  102. 102.
    Knothe G, Steidley K (2005) Kinematic viscosity of biodiesel fuel components and related compounds, influence of compound structure and comparison to petrodiesel fuel components. Fuel Process Technol 84:1059–1065CrossRefGoogle Scholar
  103. 103.
    Kousoulidou M, Fontaras G, Ntziachristos L, Samaras Z (2010) Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 89(11):3442–3449CrossRefGoogle Scholar
  104. 104.
    Szybist JP, Song J, Alam M, Boehman AL (2007) Biodiesel combustion, emissions and emission control. Fuel Process Technol 88:679–691CrossRefGoogle Scholar
  105. 105.
    Karavalakis G, Tzirakis E, Zannikos F, Stournas S, Bakeas E, Arapaki N et al (2007) Diesel/soy methyl ester blends emissions profile from a passenger vehicle operated on the European and the Athens driving cycles. SAE Trans J Fuels Lubr 1:938–946Google Scholar
  106. 106.
    Fontaras G, Karavalakis G, Kousoulidou M, Tzamkiozis T, Ntziachristos L, Bakeas E (2009) Effects of biodiesel on passenger car fuel consumption, regulated and nonregulated pollutant emissions over legislated and real-world driving cycles. Fuel 88(9):1608–1617CrossRefGoogle Scholar
  107. 107.
    Kuronen M, Mikkonen S, Aakko P, Murtonen T (2007) Hydrotreated vegetable oil as fuel for heavy duty diesel engines. In: SAE technical paper 2007-01-4031Google Scholar
  108. 108.
    Звонов ВА, Козлов АВ, Теренченко АС (2008) Исследование єффективности применения в дизельных двигателях топливных смесей и биотоплив Рос. хим. ж. (Ж. Рос. хим. об-ва им. Д.И. Менделеева) LII(6):147–151 [In Russian: Zvonov VA, Kozlov AV, Terenchenko AS (2008) Study of the efficiency of application of fuel mixtures and biofuels in diesel engines. Russ Chem J]Google Scholar
  109. 109.
    Donahue CJ, Amico TD, Exline JA (2002) Synthesis and characterization of a gasoline oxygenate, ethyl tert-butyl ether. J Chem Educ 79:16–28CrossRefGoogle Scholar
  110. 110.
    Yee KF, Mohamed AR, Tan SH (2013) A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects. Renew Sustain Energy Rev 22:604–620CrossRefGoogle Scholar
  111. 111.
    Vlasenko NV, Kochkin YN, Topka AV, Strizhak PE (2009) Liquid-phase synthesis of ethyl tert-butyl ether over acid cation-exchange inorganic–organic resins. Appl Catal A Gen 362:82–87CrossRefGoogle Scholar
  112. 112.
    Fujii S, Yabe K, Furukawa M, Matsuura M, Aoyama H (2010) A one-generation reproductive toxicity study of ethyl tertiary butyl ether in rats. Reprod Toxicol 30:414–421CrossRefGoogle Scholar
  113. 113.
    Hsieh W, Chen R, Wu T, Lin T (2002) Engine performance and pollutant emission of an SI engine using ethanol-petrol blended fuels. Atmos Environ 36:403–410CrossRefGoogle Scholar
  114. 114.
    Shuai He B, Shuai SJ, Wang S, Wang JX, Hong H (2003) The effect of ethanol blended diesel fuels on emissions from a diesel engine. Atmos Environ 37:4965–4971CrossRefGoogle Scholar
  115. 115.
    Zervas E, Montagne X, Lahaye J (2003) Emissions of regulated pollutants from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio. Environ Sci Technol 37:3232–3238CrossRefGoogle Scholar
  116. 116.
    Clairotte M, Adam TW, Chirico R, Giechaskiel B, Manfredi U, Elsasser M, Sklorz M, DeCarlo PF, Heringa MF, Zimmermann R, Martini G, Krasenbrink A, Vicet A, Tournié E, Prévôt ASH, Astorga C (2012) Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: a chemometric approach. Anal Chim Acta 717:28–38CrossRefGoogle Scholar
  117. 117.
    Graham LA, Belisle SL, Baas CL (2008) Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos Environ 42:4498–4516CrossRefGoogle Scholar
  118. 118.
    Martini G, Manfredi U, Mellios G, Krasenbrink A, De Santi G, McArragher S, Thompson N, Baro J, Zemroch PJ, Bggio F, Celasco A, Cucchi C, Cahill GFB (2007) Effects of petrol vapour pressure and ethanol content on evaporative emissions from modern european cars. In: SAE technical paper 2007-01-1928Google Scholar
  119. 119.
    Hannula I, Reiner D (2017) The race to solve the sustainable transport problem via carbon-neutral synthetic fuels and battery electric vehicles. In: Cambridge working paper economics, p 1758Google Scholar
  120. 120.
    Noga M, Juda Z (2017) Energy efficiency of a light-duty electric vehicle. In: 21st international scientific on conference transport means—proceedings of the international conference, pp 78–85Google Scholar
  121. 121.
    Malmgren I (2016) Quantifying the societal benefits of electric vehicles. World Electr Veh J 8:996–1007CrossRefGoogle Scholar
  122. 122.
    Edwards R, Larivé J-F, Beziat J-Ch (2013) Well-to-wheels analysis of future automotive fuels and powertrains in the European context tank-to-wheels (TTW) reportGoogle Scholar
  123. 123.
    Kleinschmidt CP (2011) Overview of international developments on torrefaction. In: Central European biomass conference.
  124. 124.
    Searle S, Pavlenko N (2019) Gas definitions for the European. The international council on clean transportation. Brifing Google Scholar
  125. 125.
    Searle S, Christensen A (2018) Decarbonization potential of electrofuels in the European Union. ICCT, Washington, DC.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Myroslav Panchuk
    • 1
    Email author
  • Sviatoslav Kryshtopa
    • 1
  • Aleksander Sładkowski
    • 2
  • Andrii Panchuk
    • 1
  1. 1.Ivano-Frankivsk National Technical University of Oil and Gas, IFNTUOGIvano-FrankivskUkraine
  2. 2.Department of Logistics and Transport Technologies, Faculty of Transport and Aviation EngineeringSilesian University of TechnologyKatowicePoland

Personalised recommendations