Advertisement

Improving Quality of Product and Process in the Manufacturing of Particleboard with an Integrated Quality Function Deployment Approach

  • Yildiz KoseEmail author
  • Emrullah Demirci
Chapter
  • 14 Downloads
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 279)

Abstract

Quality Function Deployment (QFD), which provides customer-oriented product design, is a quality improvement tool that reflects customer requirements (CRs) to the technical characteristics (TCs) of product and production process. The importance rating of technical characteristics in conventional QFD is determined only by customer requirements, without considering company constraints. In determining whether the technical characteristics are effective for the company, QFD is used integrated with Data Envelopment Analysis (DEA). In generating the relations in the House of Quality (HoQ), the linguistic expressions of the experts are converted into fuzzy numbers to provide flexibility to the model and to cope with uncertainty. The Fuzzy DEA-QFD method, which includes customer requirements as well as company constraints, has not been proposed. In this context, this chapter contributes to the relevant literature by means of developing an integrated QFD approach to determine the importance of technical characteristics  based on both the customer service level and interests of the firm. The proposed model is applied in a company operating in the wood-based panel industry sector. The importance levels of customer requirements in HoQ are calculated by Goal Programming, which allows for the evaluation of different types of surveys simultaneously. The incorporation of Goal Programming, DEA and Fuzzy Logic to the proposed model shows that the QFD is an interdisciplinary method and its results are reliable owing to the mathematical model.

References

  1. 1.
    Benner, M., et al.: Quality function deployment (QFD)—can it be used to develop food products? Food Qual. Prefer. 14(4), 327–339 (2003).  https://doi.org/10.1016/S0950-3293(02)00129-5CrossRefGoogle Scholar
  2. 2.
    Bevilacqua, M., Ciarapica, F.E., Giacchetta, G.: A fuzzy-QFD approach to supplier selection. J. Purch. Supply Manag. 12, 14–27 (2006).  https://doi.org/10.1016/j.pursup.2006.02.001CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, A., Geraghty, J., Young, P.: Supplier selection paradigm: an integrated hierarchical QFD methodology under multiple-criteria environment. Appl. Soft Comput. J. 10(4), 1013–1027 (2010).  https://doi.org/10.1016/j.asoc.2010.05.025CrossRefGoogle Scholar
  4. 4.
    Bottani, E., Rizzi, A.: Strategic management of logistics service: a fuzzy QFD approach. Int. J. Prod. Econ. 103(2), 585–599 (2006).  https://doi.org/10.1016/j.ijpe.2005.11.006CrossRefGoogle Scholar
  5. 5.
    Büyüközkan, G., et al.: Determining the importance weights for the design requirements in the house of quality using the fuzzy analytic network approach. Int. J. Intell. Syst. 19(5), 443–461 (2004).  https://doi.org/10.1002/int.20006CrossRefzbMATHGoogle Scholar
  6. 6.
    Büyüközkan, G., Feyzioǧlu, O.: Group decision making to better respond customer needs in software development. Comput. Ind. Eng. 48(2), 427–441 (2005).  https://doi.org/10.1016/j.cie.2005.01.007CrossRefGoogle Scholar
  7. 7.
    Chan, L.K., et al.: Rating the importance of customer needs in quality function deployment by fuzzy and entropy methods. Int. J. Prod. Res. 37(11), 2499–2518 (1999).  https://doi.org/10.1080/002075499190635CrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, L.H., Ko, W.C.: A fuzzy nonlinear model for quality function deployment considering Kano’s concept. Math. Comput. Model. 48(3), 581–593 (2008).  https://doi.org/10.1016/j.mcm.2007.06.029MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, L.H., Weng, M.C.: A fuzzy model for exploiting quality function deployment. Math. Comput. Model. 38(5), 559–570 (2003).  https://doi.org/10.1016/S0895-7177(03)90027-6MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Delice, E.K., Güngör, Z.: Determining design requirements in QFD using fuzzy mixed-integer goal programming: application of a decision support system. Int. J. Prod. Res. (2013).  https://doi.org/10.1080/00207543.2013.803625CrossRefGoogle Scholar
  11. 11.
    Durga Prasad, K., Venkata Subbaiah, K., Narayana Rao, K.: Prioritization of customer needs in house of quality using conjoint analysis. Int. J. Cent. Qual. 4(2), 145–154 (2010)Google Scholar
  12. 12.
    Fan, W., Xu, M.: The application of QFD based on DEA to improve the TPL quality of service. In: 2010 International Conference on Management and Service Science, MASS 2010 (2010).  https://doi.org/10.1109/icmss.2010.5576929
  13. 13.
    Homkhiew, C., Ratanawilai, T., Pochana, K.: Application of a quality function deployment technique to design and develop furniture products. Songklanakarin J. Sci. Technol. 34(6), 663–668 (2012)Google Scholar
  14. 14.
    Juan, Y.K., et al.: Housing refurbishment contractors selection based on a hybrid fuzzy-QFD approach. Autom. Constr. 18(2), 139–144 (2009).  https://doi.org/10.1016/j.autcon.2008.06.001CrossRefGoogle Scholar
  15. 15.
    Kamvysi, K., et al.: Integrating DEAHP and DEANP into the quality function deployment. TQM J. 22(3), 293–316 (2010).  https://doi.org/10.1108/17542731011035532CrossRefGoogle Scholar
  16. 16.
    Kang, X., et al.: Integrating evaluation grid method and fuzzy quality function deployment to new product development. Math. Probl. Eng. (2018).  https://doi.org/10.1155/2018/2451470CrossRefGoogle Scholar
  17. 17.
    Kannan, G.: Implementation of fuzzy quality function deployment in an automobile component to improve the quality characteristics. Qual. Eng. 20, 321–333 (2008).  https://doi.org/10.1080/08982110801982564CrossRefGoogle Scholar
  18. 18.
    Karsak, E.E., Dursun, M.: An integrated supplier selection methodology incorporating QFD and DEA with imprecise data. Expert Syst. Appl. 41(16), 6995–7004 (2014).  https://doi.org/10.1016/j.eswa.2014.06.020CrossRefGoogle Scholar
  19. 19.
    Karsak, E., Sozer, S., Alptekin, S.: Product planning in quality function deployment using a combined analytic network process and goal programming approach. Comput. Ind. Eng. 44(1), 171–190 (2003).  https://doi.org/10.1016/S0360-8352(02)00191-2CrossRefGoogle Scholar
  20. 20.
    Khoo, L.P., Hot, N.C.: Framework of a fuzzy quality function deployment system. Int. J. Prod. Res. 34(2), 299–311 (1996).  https://doi.org/10.1080/00207549608904904CrossRefzbMATHGoogle Scholar
  21. 21.
    Kurtulmuşoğlu, F.B., Pakdil, F., Atalay, K.D.: Quality improvement strategies of highway bus service based on a fuzzy quality function deployment approach. Transp. A: Transp. Sci. 12(2), 175–202 (2016).  https://doi.org/10.1080/23249935.2015.1117535CrossRefGoogle Scholar
  22. 22.
    Li, Y.L., Chin, K.S., Luo, X.G.: Determining the final priority ratings of customer requirements in product planning by MDBM and BSC. Expert Syst. Appl. 39(1), 1243–1255 (2012).  https://doi.org/10.1016/j.eswa.2011.07.133CrossRefGoogle Scholar
  23. 23.
    Lin, T., et al.: Ergonomics product development of over bed table for bedridden patients. Comput.-Aided Des. Appl. (2016).  https://doi.org/10.1080/16864360.2015.1131550CrossRefGoogle Scholar
  24. 24.
    Liou, T.S., Wang, M.J.J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 50(3), 247–255 (1992).  https://doi.org/10.1016/0165-0114(92)90223-QMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Luo, X., Tang, J., Kwong, C.K. A QFD-based optimization method for scalable product platform. In: Advances in Product Family and Product Platform Design: Methods and Applications, pp. 141–156 (2014)  https://doi.org/10.1007/978-1-4614-7937-6_14
  26. 26.
    Milunovic Koprivica, S., Filipovic, J.: Application of traditional and fuzzy quality function deployment in the product development process. EMJ—Eng. Manag. J. (2018).  https://doi.org/10.1080/10429247.2018.1438027CrossRefGoogle Scholar
  27. 27.
    Park, T., Kim, K.J.: Determination of an optimal set of design requirements using house of quality. J. Oper. Manag. 16, 569–581 (1998)CrossRefGoogle Scholar
  28. 28.
    Ramanathan, R., Yunfeng, J.: Incorporating cost and environmental factors in quality function deployment using data envelopment analysis. Omega 37(3), 711–723 (2009).  https://doi.org/10.1016/j.omega.2007.12.003CrossRefGoogle Scholar
  29. 29.
    Schillo, R.S., Isabelle, D.A., Shakiba, A.: Linking advanced biofuels policies with stakeholder interests: a method building on quality function deployment. Energy Policy 100, 126–137 (2017).  https://doi.org/10.1016/j.enpol.2016.09.056CrossRefGoogle Scholar
  30. 30.
    Wang, Y.M., Chin, K.S.: A linear goal programming approach to determining the relative importance weights of customer requirements in quality function deployment. Inf. Sci. 181(24), 5523–5533 (2011).  https://doi.org/10.1016/j.ins.2011.08.016MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang, Y.M., Chin, K.S.: Fuzzy data envelopment analysis: a fuzzy expected value approach. Expert Syst. Appl. 38(9), 11678–11685 (2011).  https://doi.org/10.1016/j.eswa.2011.03.049CrossRefGoogle Scholar
  32. 32.
    Wang, Y.M., Chin, K.S., Yang, J.B.: Measuring the performances of decision-making units using geometric average efficiency. J. Oper. Res. Soc. 58(7), 929–937 (2007).  https://doi.org/10.1057/palgrave.jors.2602205CrossRefzbMATHGoogle Scholar
  33. 33.
    Wu, H.H., Liao, A.Y.H., Wang, P.C.: Using grey theory in quality function deployment to analyse dynamic customer requirements. Int. J. Adv. Manuf. Technol. 25(11–12), 1241–1247 (2005).  https://doi.org/10.1007/s00170-003-1948-8CrossRefGoogle Scholar
  34. 34.
    Wu, H.H., Shieh, J.I.: Using a Markov chain model in quality function deployment to analyse customer requirements. Int. J. Adv. Manuf. Technol. 30(1–2), 141–146 (2006).  https://doi.org/10.1007/s00170-005-0023-zCrossRefGoogle Scholar
  35. 35.
    Wu, X., Liao, H.: An approach to quality function deployment based on probabilistic linguistic term sets and ORESTE method for multi-expert multi-criteria decision making. Inf. Fusion (2018).  https://doi.org/10.1016/j.inffus.2017.11.008CrossRefGoogle Scholar
  36. 36.
    Zhang, X.: User selection for collaboration in product development based on QFD and DEA approach. J. Intell. Manuf. 30(5), 2231–2243 (2019).  https://doi.org/10.1007/s10845-017-1386-3CrossRefGoogle Scholar
  37. 37.
    Zadeh, L.A.: Fuzzy Logic. IEEE Comput. 21(4), 83–93 (1988).  https://doi.org/10.1109/2.53CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Industrial Engineering Department, Management FacultyIstanbul Technical UniversityIstanbulTurkey
  2. 2.Industrial Engineering Department, Engineering FacultyKaradeniz Technical UniversityTrabzonTurkey

Personalised recommendations