A Literature Review on Fuzzy FMEA and an Application on Infant Car Seat Design Using Spherical Fuzzy Sets

  • Elif Haktanir
  • Cengiz KahramanEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 279)


Failure mode and effects analysis (FMEA) is a structured approach to determine the potential failures that may arise during the implementation of a process. Because of the vagueness and impreciseness in the definition of severity, occurrence probability, and detectability factors, fuzzy set-based techniques can be used in FMEA. Spherical fuzzy sets are a recently developed extension of ordinary fuzzy sets integrating the principles of neutrosophic sets and Pythagorean fuzzy sets. In this chapter, we summarize the literature on fuzzy FMEA and propose a spherical fuzzy FMEA model with an illustrative application on infant car seats design.


  1. 1.
    Papadopoulos, Y., Parker, D., Grante, C.: Automating the failure modes and effects analysis of safety critical systems. In: Proceedings of IEEE International Symposium on High Assurance Systems Engineering, vol. 8, pp. 310–311 (2004)Google Scholar
  2. 2.
    Shebl, N.A., Franklin, B.D., Barber, N.: Failure mode and effects analysis outputs: are they valid? BMC Health Serv. Res. 12(1) (2012)Google Scholar
  3. 3.
    Liu, H.C., Fan, X.J., Li, P., Chen, Y.Z.: Evaluating the risk of failure modes with extended MULTIMOORA method under fuzzy environment. Eng. Appl. Artif. Intell. 34, 168–177 (2014)CrossRefGoogle Scholar
  4. 4.
    Zadeh, L.A.: Fuzzy sets. Inf. Control. 338–353 (1965)Google Scholar
  5. 5.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)CrossRefGoogle Scholar
  7. 7.
    Smarandache, F.: Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math. 287 (2003)Google Scholar
  8. 8.
    Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 529–539 (2010)Google Scholar
  9. 9.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets Theory and Applications. Springer (1999)Google Scholar
  10. 10.
    Yager, R.: Pythagorean fuzzy subsets. In: Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada, pp. 57–61 (2013)Google Scholar
  11. 11.
    Kutlu Gündoǧdu, F., Kahraman, C.: Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 36(1), 337–352 (2019)CrossRefGoogle Scholar
  12. 12.
    Chang, K., Cheng, C.: A risk assessment methodology using intuitionistic fuzzy set in FMEA. Int. J. Syst. Sci. 41(12), 1457–1471 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Geng, X., Zhang, Y.: Improved FMEA approach for risk evaluation based on hesitant fuzzy set. Comput. Integr. Manuf. Syst. CIMS 23(2), 340–348 (2017)MathSciNetGoogle Scholar
  14. 14.
    Akyuz, E., Celik, E.: A quantitative risk analysis by using interval type-2 fuzzy FMEA approach: the case of oil spill. Marit. Policy Manag. 45(8), 979–994 (2018)CrossRefGoogle Scholar
  15. 15.
    Sayyadi Tooranloo, H., Ayatollah, A.S., Alboghobish, S.: Evaluating knowledge management failure factors using intuitionistic fuzzy FMEA approach. Knowl. Inf. Syst. 57(1), 183–205 (2018)CrossRefGoogle Scholar
  16. 16.
    Wang, R., Zhu, J., Li, Y.: Improved FMEA method for risk evaluation based on intuitionistic fuzzy MULTIMOORA. Comput. Integr. Manuf. Syst. CIMS 24(2), 290–301 (2018)Google Scholar
  17. 17.
    Mirghafoori, S.H., Izadi, M.R., Daei, A.: Analysis of the barriers affecting the quality of electronic services of libraries by VIKOR, FMEA and entropy combined approach in an intuitionistic-fuzzy environment. J. Intell. Fuzzy Syst. 34(4), 2441–2451 (2018)CrossRefGoogle Scholar
  18. 18.
    Mete, S.: Assessing occupational risks in pipeline construction using FMEA-based AHP-MOORA integrated approach under Pythagorean fuzzy environment. Hum. Ecol. Risk Assess. 25(7), 1645–1660 (2019)CrossRefGoogle Scholar
  19. 19.
    Kutlu Gündoğdu, F., Kahraman, C.: A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. Eng. Appl. Artif. Intell. 85, 307–323 (2019)CrossRefGoogle Scholar
  20. 20.
    Pillay, A., Wang, J.: Modified failure mode and effects analysis using approximate reasoning. Reliab. Eng. Syst. Saf. 79(1), 69–85 (2003)CrossRefGoogle Scholar
  21. 21.
    Wang, Y., Chin, K., Poon, G.K.K., Yang, J.: Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert. Syst. Appl. 36(2 Part 1), 1195–1207 (2009)Google Scholar
  22. 22.
    Xu, K., Tang, L.C., Xie, M., Ho, S.L., Zhu, M.L.: Fuzzy assessment of FMEA for engine systems. Reliab. Eng. Syst. Saf. 75(1), 17–29 (2002)CrossRefGoogle Scholar
  23. 23.
    Kutlu, A.C., Ekmekçioǧlu, M.: Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Syst. Appl. 39(1), 61–67 (2012)CrossRefGoogle Scholar
  24. 24.
    Sharma, R.K., Kumar, D., Kumar, P.: Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modelling. Int. J. Qual. Reliab. Manag. 22(9), 986–1004 (2005)CrossRefGoogle Scholar
  25. 25.
    Chin, K., Wang, Y., Ka Kwai Poon, G., Yang, J.: Failure mode and effects analysis using a group-based evidential reasoning approach. Comput. Oper. Res. 36(6), 1768–1779 (2009)Google Scholar
  26. 26.
    Yang, Z., Bonsall, S., Wang, J.: Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Trans. Reliab. 57(3), 517–528 (2008)CrossRefGoogle Scholar
  27. 27.
    Peláez, C.E., Bowles, J.B.: Using fuzzy cognitive maps as a system model for failure modes and effects analysis. Inf. Sci. 88(1–4), 177–199 (1996)Google Scholar
  28. 28.
    Liu, H., Liu, L., Liu, N., Mao, L.: Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Syst. Appl. 39(17), 12926–12934 (2012)CrossRefGoogle Scholar
  29. 29.
    Liu, H., Liu, L., Bian, Q., Lin, Q., Dong, N., Xu, P.: Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Syst. Appl. 38(4), 4403–4415 (2011)CrossRefGoogle Scholar
  30. 30.
    Tay, K.M., Lim, C.P.: Fuzzy FMEA with a guided rules reduction system for prioritization of failures. Int. J. Qual. Reliab. Manag. 23(8), 1047–1066 (2006)CrossRefGoogle Scholar
  31. 31.
    Chang, C., Wei, C., Lee, Y.: Failure mode and effects analysis using fuzzy method and grey theory. Kybernetes 28(8–9), 1072–1080 (1999)CrossRefGoogle Scholar
  32. 32.
    Abdelgawad, M., Fayek, A.R.: Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. J. Constr. Eng. Manag. 136(9), 1028–1036 (2010)CrossRefGoogle Scholar
  33. 33.
    Hu, A.H., Hsu, C., Kuo, T., Wu, W.: Risk evaluation of green components to hazardous substance using FMEA and FAHP. Expert. Syst. Appl. 36(3 Part 2), 7142–7147 (2009)Google Scholar
  34. 34.
    Guimarães, A.C.F., Lapa, C.M.F.: Fuzzy inference to risk assessment on nuclear engineering systems. Appl. Soft Comput. J. 7(1), 17–28 (2007)CrossRefGoogle Scholar
  35. 35.
    Chin, K., Chan, A., Yang, J.: Development of a fuzzy FMEA based product design system. Int. J. Adv. Manuf. Technol. 36(7–8), 633–649 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Industrial EngineeringIstanbul Technical UniversityBesiktas, IstanbulTurkey
  2. 2.Department of Industrial EngineeringAltınbas UniversityBagcilar, IstanbulTurkey

Personalised recommendations