Warehouse Location Design Using AS/RS Technologies: An Interval Valued Intuitionistic Fuzzy AHP Approach

  • Cengiz KahramanEmail author
  • Başar Öztayşi
  • Sezi Cevik Onar
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 279)


An automated storage and retrieval system (AS/RS) is a type of warehouse automation technology specifically designed to buffer, store, and retrieve product and inventory on demand. AS/RS technology varies substantially, and can consist of shuttles, cranes, carousels, vertical lift modules (VLMs), micro-loads, mini-loads, unit-loads, or other systems. Design of a warehouse location involving AS/RS technologies is a multicriteria decision making problem with several criteria under vague and imprecise environment. In this chapter, two different warehouse location design alternatives involving AS/RS technologies are evaluated by using an interval valued intuitionistic fuzzy analytic hierarchy process (AHP) approach.


  1. 1.
    Bolturk, E.: AS/RS technology selection using spherical fuzzy TOPSIS and neutrosophic TOPSIS. In: Intelligent and Fuzzy Techniques in Big Data Analytics and Decision Making, pp 969–976. Springer, Cham (2020)Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefGoogle Scholar
  3. 3.
    Kahraman, C., Cevik Onar, S., Oztaysi, B.: A comparison of wind energy investment alternatives using interval-valued intuitionistic fuzzy benefit/cost analysis. Sustainability 8(2), 118 (2016)CrossRefGoogle Scholar
  4. 4.
    Kahraman, C., Çevik Onar, S., Öztayşi, B.: Engineering economic analyses using intuitionistic and hesitant fuzzy sets. J. Intell. Fuzzy Syst. 29(3), 1151–1168 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kahraman, C., Cevik Onar, S., Cebi, S., Oztaysi, B.: Extension of information axiom from ordinary to intuitionistic fuzzy sets: an application to search algorithm selection. Comput. Ind. Eng. 105, 348–361 (2017)CrossRefGoogle Scholar
  6. 6.
    Kahraman, C., Cevik Onar, S., Oztaysi, B.: B2C marketplace prioritization using hesitant fuzzy linguistic AHP. Int. J. Fuzzy Syst. 20(7), 2202–2215 (2018)CrossRefGoogle Scholar
  7. 7.
    Cevik Onar, S., Oztaysi, B., Kahraman, C.: Multicriteria evaluation of cloud service providers using pythagorean fuzzy TOPSIS. J. Mult.-Valued Logic Soft Comput. 30, 263–283 (2018)Google Scholar
  8. 8.
  9. 9.
    Gagliardi, J.P., Renaud, J., Ruiz, A.: Models for automated storage and retrieval systems: a literature review. Int. J. Prod. Res. 50(24), 7110–7125 (2012)CrossRefGoogle Scholar
  10. 10.
    Roodbergen, K.J., Vis, I.F.A.: A survey of literature on automated storage and retrieval systems. Eur. J. Oper. Res. 194, 343–362 (2009)CrossRefGoogle Scholar
  11. 11.
    Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A.: Facilities Planning, 3rd edn. Wiley (2003)Google Scholar
  12. 12.
    Atanassov, G.Gargov: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wu, J., Huang, H., Cao, Q.W.: Research on AHP with interval-valued intuitionistic fuzzy sets and its application in multi-criteria decision making problems. Appl. Math. Model. 37(24), 9898–9906 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bozer, Y.A., White, J.A.: Optimum designs of automated storage/retrieval systems. In: TIMS/ORSA Joint National Meeting (1980)Google Scholar
  15. 15.
    Estrella, F.J., Cevik Onar, S., Rodríguez, R.M., Oztaysi, B., Martinez, L., Kahraman, C.: Selecting firms in university technoparks: a hesitant linguistic fuzzy TOPSIS model for heterogeneous contexts. J. Intell. Fuzzy Syst. 33(2), 1155–1172 (2017)CrossRefGoogle Scholar
  16. 16.
    Kahraman, C., Oztaysi, B., Cevik Onar, S.: A multicriteria supplier selection model using hesitant fuzzy linguistic term sets. In: Proceedings of the 11th International FLINS Conference (FLINS 2014) Decision Making and Soft Computing (2014)Google Scholar
  17. 17.
    Behret, H., Öztayşi, B., Kahraman, C.: A Fuzzy inference system for supply chain risk management. In: Practical Applications of Intelligent Systems, 429–438. Springer, Berlin (2011)Google Scholar
  18. 18.
    Kaya, I., Öztayşi, B., Kahraman, C.: A two-phased fuzzy multicriteria selection among public transportation investments for policy-making and risk governance. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 20(01), 31–48 (2012)CrossRefGoogle Scholar
  19. 19.
    Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi, B.: A novel trapezoidal intuitionistic fuzzy information axiom approach: An application to multicriteria landfill site selection. Eng. Appl. Artif. Intell. 67, 157–172 (2018)CrossRefGoogle Scholar
  20. 20.
    Kahraman, C., Oztayşi, B., Cevik Onar, S.: An integrated intuitionistic fuzzy AHP and TOPSIS approach to evaluation of outsource manufacturers. J. Intell. Syst. 3(3), 197–204 (2017)Google Scholar
  21. 21.
    Kahraman, C., Oztaysi, B., Cevik Onar, S., Dogan, O.: Intuitionistic fuzzy originated interval type-2 fuzzy AHP: an application to damless hydroelectric power plants. Int. J. Anal. Hierarchy Process 10(2), 266–292 (2018)Google Scholar
  22. 22.
    Kahraman, C., Parchami, A., Cevik Onar, S., Oztaysi, B.: Process capability analysis using intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 32(3), 1659–1671 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Cengiz Kahraman
    • 1
    Email author
  • Başar Öztayşi
    • 1
  • Sezi Cevik Onar
    • 1
  1. 1.Department of Industrial EngineeringIstanbul Technical UniversityMacka, IstanbulTurkey

Personalised recommendations