In Situ PM IRRAS Studies of Redox-Active Molecular Films Adsorbed on Electrode Surfaces

  • Izabella Brand
Part of the Monographs in Electrochemistry book series (MOEC)


Determination of potential-dependent changes in the composition and structure of redox-active molecules involved in electrochemical reactions is one of the most important research objects in electrochemistry. Reduction and oxidation reactions take place on the electrode surface indicating that a redox-active substrate, at least during the redox reaction, is in direct contact with the electrode surface. In this chapter the applicability of PM IRRAS for studies of changes in the composition, structure and orientation of redox-active species in sub-monolayer, monolayer, multilayer films deposited on the metallic electrode surface is described. Use of non-metallic electrodes, such as glassy carbon electrodes, is of large practical importance in modern electrochemistry. Indeed, PM IRRAS with electrochemical control was successfully applied to study structural changes in complex redox reactions in thick polymer and composite material films on the glassy carbon electrode.


  1. 1.
    Golden WG, Kunimatsu K, Seki H (1984) Application of polarization-modulated Fourier transform infrared reflection-absorption spectroscopy to the study of carbon monoxide adsorption and oxidation on a smooth platinum electrode. J Phys Chem 88:1275–1277Google Scholar
  2. 2.
    Brand I, Juhaniewicz J, Verani CN, Wickramasinghe L (2018) An in situ spectroelectrochemical study on the orientation changes of an [FeIIILN2O3] metallosurfactant deposited as LB films on gold electrode surfaces. Dalton Trans 47:14218–14226CrossRefGoogle Scholar
  3. 3.
    Tagliazucchi M, Méndez De Leo LP, Cadranel A, Baraldo LM, Völker E, Bonazzola C, Calvo EJ, Zamlynny V (2010) PM IRRAS spectroelectrochemistry of layer-by-layer self-assembled polyelectrolyte multilayers. J Electroanal Chem 649:110–118CrossRefGoogle Scholar
  4. 4.
    Hosseini P, Wittstock G, Brand I (2018) Infrared spectroelectrochemical analysis of potential dependent changes in cobalt hexacyanoferrate and copper hexacyanoferrate films on gold electrodes. J Electroanal Chem 812:199–206CrossRefGoogle Scholar
  5. 5.
    Roberts G (1990) Langmuir–Blodgett films. Plenum, New YorkCrossRefGoogle Scholar
  6. 6.
    Allard MM, Sonk JA, Heeg MJ, McGarvey BR, Schlegel HB, Verani CN (2012) Bioinspired five-coordinate iron(III) complexes for stabilization of phenoxyl radicals. Angew Chem Int Ed 51:3178–3182Google Scholar
  7. 7.
    Wickramasinghe LD, Mazumder S, Kpogo KK, Staples RJ, Schlegel HB, Verani CN (2016) Electronic modulation of the SOMO–HOMO energy gap in iron(III) complexes towards unimolecular current rectification. Chem Eur J 22:10786–10790CrossRefGoogle Scholar
  8. 8.
    Wickramasinhe LD, Mazumder S, Gonawala S, Madusanka Perera M, Baydoun H, Thapa B, Li L, Xis L, Mao G, Zhou Z, Schlegel HB, Verani CN (2014) The mechanisms of rectification in Au| molecule| Au devices based on Langmuir-Blodgett monolayers of iron (III) and copper (II) surfactants. Angew Chem Int Ed 53:14462–14467CrossRefGoogle Scholar
  9. 9.
    Lanznaster M, Hratchian HP, Heeg MJ, McGarvey BR, Schlegel HB, Verani CN (2006) Structural and electronic behavior of unprecedented five-coordinate iron(III) and gallium(III) complexes with a new phenol-rich electroactive ligand. Inorg Chem 45:955–957CrossRefGoogle Scholar
  10. 10.
    Chetty R, Christensen PA, Golding BT (2003) In situ FTIR studies on the electrochemical reduction of halogenated phenols. ChemComm 8:984–985Google Scholar
  11. 11.
    Villalba M, Mendez De Leo LP, Calvo EJ (2014) PM-IRRA spectroelectrochemistry of hexacyanoferrate films in layer-by-layer polyelectrolyte multilayers. ChemElectroChem 1:195–199CrossRefGoogle Scholar
  12. 12.
    Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compounds, 3rd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Kulesza PJ, Malik MA, Zamponi S, Berrettoni M, Marassi R (1995) Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt (II) hexacyanoferrate (III, II) films. J Electroanal Chem 397:287–292CrossRefGoogle Scholar
  14. 14.
    Joseph J, Gomathi H, Rao GP (1991) Electrodes modified with cobalt hexacyanoferrate. J Electroanal Chem 304:263–269CrossRefGoogle Scholar
  15. 15.
    Brand I, Rüdiger C, Hingerl K, Portenkirchner E, Kunze-Liebhäuser J (2015) Compact titanium oxycarbide: a new substrate for quantitative analysis of molecular films by means of infrared reflection absorption spectroscopy. J Phys Chem C 119:13767–13776CrossRefGoogle Scholar
  16. 16.
    Dongmo S, Wittstock G, Christoffers J, Brand I (2017) In situ determination of potential-driven structural changes in a redox-active plumbagin polymer film on a glassy carbon electrode using PM IRRAS under electrochemical control. Electrochim Acta 255:298–308CrossRefGoogle Scholar
  17. 17.
    Vieira L, Schennach R, Gollas B (2015) In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Phys Chem Chem Phys 17:12870–12880CrossRefGoogle Scholar
  18. 18.
    Monyoncho EA, Steinmann SN, Michel C, Baranova EA, Woo TK, Sautet P (2016) Ethanol electro-oxidation on palladium revisited using polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) and density functional theory (DFT): why is it difficult to break the C−C bond? ACS Catal 6:4894–4906CrossRefGoogle Scholar
  19. 19.
    Monyoncho EA, Zamlynny V, Woo TK, Baranova EA (2018) The utility of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) in surface and in situ studies: new data processing and presentation. Analyst (Cambridge, UK) 143:2563–2573CrossRefGoogle Scholar
  20. 20.
    Alkire RC, Bartlett PN, Lipkowski J (2015) Electrochemistry of carbon electrodes. Weinheim, WilleyCrossRefGoogle Scholar
  21. 21.
    Porter MD, Bright TB, Allara DL (1986) Quantitative aspects of infrared external reflection spectroscopy: polymer/glassy carbon interface. Anal Chem 58:2461–2465CrossRefGoogle Scholar
  22. 22.
    Dongmo S, Witt J, Wittstock G (2015) Electropolymerization of quinone-polymers onto grafted quinone monolayers: a route towards non-passivating, catalytically active films. Electrochim Acta 155:474–482CrossRefGoogle Scholar
  23. 23.
    Moncelli MR, Becucci L, Nelson A, Guidelli R (1996) Electrochemical modeling of electron and proton transfer to ubiquinone-10 in a self-assembled phospholipid monolayer. Biophys J 70:2716–2726CrossRefGoogle Scholar
  24. 24.
    Buffeteau T, Desbat B, Blaudez D, Turlet JM (2000) Calibration procedure to derive IRRAS spectra from PM IRRAS spectra. Appl Spectrosc 54:1646–1650CrossRefGoogle Scholar
  25. 25.
    Buffeteau T, Desbat B, Turlet JM (1991) Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: experimental procedure and quantitative analysis. Appl Spectrosc 45:380–388CrossRefGoogle Scholar
  26. 26.
    Zamlynny V, Lipkowski J (2006) Quantitative SNIFTIRS and PM IRRAS of organic molecules at electrode surfaces. In: Alkire RC, Kolb DM, Lipkowski J, Ross PN (eds) Advances in electrochemical science and engineering, Diffraction and spectroscopic methods in electrochemistry, vol 9. Wiley-VCH, Weinheim, pp 315–376CrossRefGoogle Scholar
  27. 27.
    Greenler RG (1966) Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J Chem Phys 44:310–314CrossRefGoogle Scholar
  28. 28.
    Monyoncho EA, Ntais S, Brazeau N, Wu JJ, Sun CL, Baranova EA (2016) Role of the metal-oxide support in the catalytic activity of Pd nanoparticles for ethanol electrooxidation in alkaline media. ChemElectroChem 3:218–227CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Izabella Brand
    • 1
  1. 1.Department of ChemistryUniversity of OldenburgOldenburgGermany

Personalised recommendations