Advertisement

IGrC: Cognitive and Motor Changes During Symptoms Development in Parkinson’s Disease Patients

  • Andrzej W. PrzybyszewskiEmail author
  • Jerzy Paweł Nowacki
  • Aldona Drabik
  • Stanislaw Szlufik
  • Dariusz M. Koziorowski
Conference paper
  • 269 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12034)

Abstract

Cognitive symptoms are characteristic for neurodegenerative disease: there are dominating in the Alzheimer’s, but secondary in Parkinson’s disease (PD). However, in PD motor symptoms (MS) are dominating and their characteristic helps neurologist to recognize the disease. There are a large number of data mining publications that analyzed MS in PD. Present study is related to the question if development of cognitive symptoms is related to motor symptoms or if they are two independent processes? We have responded to this problem with help of IGrC (intelligent granular computing) approach. We have put together eye movement, neurological and neuropsychological tests. Our study was dedicated to 47 Parkinson’s disease patients in two sessions: S#1 - without medications (MedOFF) and S#2 after taking medications (MedON). There were two groups of patients: Gr1 (23 patients) less advanced and Gr2 more advanced PD. We have measured Gr1 in three visits every 6 months: Gr1VIS1, Gr1VIS2, Gr1VIS3. Gr2 (24 patients) has only one visit (no visit number). With rough set theory (RST) that belongs to IGrC we have found from Gr2 three different sets of rules: a) general rules (GRUL) determined by all attributes; b) motor related rules (MRUL) – motor attributes; c) cognitive rules (CRUL) determined by cognitive attributes. By applying these different sets of rules to different Gr1 visits we have found different set of symptoms developments. With GRUL we have found for Gr1VIS1 accuracy = 0.682, for Gr1VIS2 acc. = 0.857, for Gr1VIS3 acc. = 0.875. With MRUL we have found for Gr1VIS1 acc. = 0.80, for Gr1VIS2 acc. = 0.933, for Gr1VIS3 acc. = 1.0. With CRUL we have found for Gr1VIS1 acc. = 0.50, for Gr1VIS2 acc. = 0.60, for Gr1VIS3 acc. = 0.636. Cognitive changes are independent from the motor symptoms development.

Keywords

Neurodegeneration Rough set theory Intelligent granular computing 

References

  1. 1.
    Przybyszewski, A.W., Kon, M., Szlufik, S., Szymanski, A., Koziorowski, D.M.: Multimodal learning and intelligent prediction of symptom development in individual Parkinson’s patients. Sensors 16(9), 1498 (2016)CrossRefGoogle Scholar
  2. 2.
    Przybyszewski, A.W.: Fuzzy RST and RST rules can predict effects of different therapies in Parkinson’s disease patients. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 409–416. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01851-1_39CrossRefGoogle Scholar
  3. 3.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Springer, Dordrecht (1991).  https://doi.org/10.1007/978-94-011-3534-4CrossRefzbMATHGoogle Scholar
  4. 4.
    Jankowski, A.: Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective. LNNS, vol. 17. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57627-5CrossRefGoogle Scholar
  5. 5.
    Bazan, J., Nguyen, S.H., et al.: Desion rules synthesis for object classification. In: Orłowska, E. (ed.) Incomplete Information: Rough Set Analysis, Physica – Verlag, Heidelberg, pp. 23–57 (1998)Google Scholar
  6. 6.
    Przybyszewski, A.W.: Applying data mining and machine learning algorithms to predict symptom development in Parkinson’s disease. Ann. Acad. Med. Siles. 68(5), 332–349 (2014)Google Scholar
  7. 7.
    Bazan, J., Nguyen, H.S., Nguyen, S.H., et al.: Rough set algorithms in classification problem. In: Polkowski, L., Tsumoto, S., Lin, T. (eds.) Rough Set Methods and Applications, pp. 49–88. Physica-Verlag, Heidelberg (2000).  https://doi.org/10.1007/978-3-7908-1840-6_3CrossRefGoogle Scholar
  8. 8.
    Grzymała-Busse, J.: A New Version of the Rule Induction System LERS. Fundamenta Informaticae 31(1), 27–39 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bazan, J.G., Szczuka, M.: The rough set exploration system. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56. Springer, Heidelberg (2005).  https://doi.org/10.1007/11427834_2CrossRefzbMATHGoogle Scholar
  10. 10.
    Przybyszewski, A.W.: The neurophysiological bases of cognitive computation using rough set theory. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 287–317. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89876-4_16CrossRefGoogle Scholar
  11. 11.
    Bazan, J.G., Szczuka, M.: RSES and RSESlib - a collection of tools for rough set computations. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45554-X_12CrossRefzbMATHGoogle Scholar
  12. 12.
    Przybyszewski, A.W., Nowacki, J.P., Drabik, A., Szlufik, S., Habela, P., Koziorowski, D.M.: Granular computing (GC) demonstrates interactions between depression and symptoms development in Parkinson’s disease patients. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 591–601. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-14802-7_51CrossRefGoogle Scholar
  13. 13.
    Przybyszewski, A.W.: Parkinson’s Disease Development Prediction by C-Granule Computing. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11683, pp. 296–306. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-28377-3_24CrossRefGoogle Scholar
  14. 14.
    Khoury, N., Attal, F., Amirat, Y., Oukhellou, L., Mohammed, S.: Data-driven based approach to aid Parkinson’s disease diagnosis. Sensors (Basel) 19(2), 242 (2019).  https://doi.org/10.3390/s19020242CrossRefGoogle Scholar
  15. 15.
    Yadav, G., Kumar, Y., Sahoo, G.: Predication of Parkinson’s disease using data mining methods: a comparative analysis of tree, statistical, and support vector machine classifiers. Indian J. Med. Sci. 65(6), 231–242 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Polish-Japanese Academy of Information TechnologyWarsawPoland
  2. 2.Department of Neurology, Faculty of Health ScienceMedical University of WarsawWarsawPoland

Personalised recommendations