Advertisement

AQM Mechanism with Neuron Tuning Parameters

  • Jakub SzygułaEmail author
  • Adam Domański
  • Joanna Domańska
  • Tadeusz Czachórski
  • Dariusz Marek
  • Jerzy Klamka
Conference paper
  • 273 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12034)

Abstract

The congestion control is one of the most important questions in modern computer network performance. This article investigates the problem of adaptive neuron based choice of the Active Queue Mechanisms parameters. We evaluate the performance of the AQM mechanism in the presence of self-similar traffic based on the automatic selection of their parameters using the adaptive neuron. We have also proposed an AQM mechanism based on non-integer order \(PI^\alpha \) controller with neuron tuning parameters and compared it with Adaptive Neuron AQM. The numerical results are obtained using the discrete event simulation model.

Keywords

AQM Congestion control \(PI^\alpha \) controller Neuron 

Notes

Acknowledgements

This research was partially financed by National Science Center project no. 2017/27/B/ST6/00145.

This research was partially financed by 02/020/BKM19/0183.

References

  1. 1.
    Abry, P., Veitch, D.: Wavelet analysis of long-range-dependent traffic. IEEE Trans. Inform. Theory 44(1), 2–15 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bhatnagar, S., Patro, R.: A proof of convergence of the B-RED and P-RED algorithms for random early detection. IEEE Commun. Lett. 13, 809–811 (2009)CrossRefGoogle Scholar
  3. 3.
    Bonald, T., May, M., Bolot, J.C.: Analytic evaluation of RED performance. In: Proceedings of INFOCOM (2000)Google Scholar
  4. 4.
    Braden, B., et al.: Recommendations on queue management and congestion avoidance in the internet. RFC 2309, IETF (1998)Google Scholar
  5. 5.
    Feng, W.C., Kandlur, D., Saha, D.: Adaptive packet marking for maintaining end to end throughput in a differentiated service internet. IEEE/ACM Trans. Netw. 7(5), 685–697 (1999)CrossRefGoogle Scholar
  6. 6.
    Domańska, J., Augustyn, D.R., Domański, A.: The choice of optimal 3-rd order polynomial packet dropping function for NLRED in the presence of self-similar traffic. Bull. Polish Acad. Sci.: Tech. Sci. 60(4), 779–786 (2012)Google Scholar
  7. 7.
    Domańska, J., Domański, A.: The influence of traffic self-similarity on QoS mechanisms. In: Proceedings of the International Symposium on Applications and the Internet, Saint, Trento, Italy, pp. 300–303 (2005)Google Scholar
  8. 8.
    Domańska, J., Domański, A., Augustyn, D.R., Klamka, J.: A RED modified weighted moving average for soft real-time application. Int. J. Appl. Math. Comput. Sci. 24(3), 697–707 (2014)CrossRefGoogle Scholar
  9. 9.
    Domańska, J., Domański, A., Czachórski, T.: Fluid flow analysis of RED algorithm with modified weighted moving average. In: Dudin, A., Klimenok, V., Tsarenkov, G., Dudin, S. (eds.) BWWQT 2013. Communications in Computer and Information Science, vol. 356, pp. 50–58. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35980-4_7CrossRefGoogle Scholar
  10. 10.
    Domańska, J., Domańska, A., Czachórski, T.: A few investigations of long-range dependence in network traffic. In: Czachórski, T., Gelenbe, E., Lent, R. (eds.) Information Sciences and Systems 2014, pp. 137–144. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09465-6_15CrossRefGoogle Scholar
  11. 11.
    Domańska, J., Domański, A., Czachórski, T.: Estimating the intensity of long-range dependence in real and synthetic traffic traces. In: Gaj, P., Kwiecień, A., Stera, P. (eds.) CN 2015. CCIS, vol. 522, pp. 11–22. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19419-6_2CrossRefGoogle Scholar
  12. 12.
    Domańska, J., Domański, A., Czachórski, T., Klamka, J.: The use of a non-integer order PI controller with an active queue management mechanism. Int. J. Appl. Math. Comput. Sci. 26, 777–789 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Domański, A., Domańska, J., Czachórski, T., Klamka, J.: Self-similarity traffic and AQM mechanism based on non-integer order \(PI^{\alpha }D^{\beta }\) controller. In: Gaj, P., Kwiecień, A., Sawicki, M. (eds.) CN 2017. CCIS, vol. 718, pp. 336–350. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59767-6_27CrossRefGoogle Scholar
  14. 14.
    Domański, A., Domańska, J., Czachórski, T., Klamka, J., Marek, D., Szyguła, J.: GPU accelerated non-integer order \(PI^{\alpha }D^\beta \) controller used as AQM mechanism. In: Gaj, P., Sawicki, M., Suchacka, G., Kwiecień, A. (eds.) CN 2018. CCIS, vol. 860, pp. 286–299. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-92459-5_23CrossRefGoogle Scholar
  15. 15.
    Domański, A., Domańska, J., Czachórski, T., Klamka, J., Marek, D., Szyguła, J.: The influence of the traffic self-similarity on the choice of the non-integer order PI\(^\alpha \) controller parameters. In: Czachórski, T., Gelenbe, E., Grochla, K., Lent, R. (eds.) ISCIS 2018. CCIS, vol. 935, pp. 76–83. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00840-6_9CrossRefGoogle Scholar
  16. 16.
    Domański, A., Domańska, J., Czachórski, T., Klamka, J., Szyguła, J.: The AQM dropping packet probability function based on non-integer order \(PI^{\alpha }D^\beta \) controller. In: Ostalczyk, P., Sankowski, D., Nowakowski, J. (eds.) RRNR 2017. LNEE, vol. 496, pp. 36–48. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-78458-8_4CrossRefzbMATHGoogle Scholar
  17. 17.
    Floyd, S.: Discussions of setting parameters (1997)Google Scholar
  18. 18.
    Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)CrossRefGoogle Scholar
  19. 19.
    Hassan, M., Jain, R.: High Performance TCP/IP Networking - Concepts, Issues and Solutions. Pearson Education Inc., London (2004)Google Scholar
  20. 20.
    Ho, H.-J., Lin, W.-M.: AURED - autonomous random early detection for TCP congestion control. In: 3rd International Conference on Systems and Networks Communications Malta (2008)Google Scholar
  21. 21.
    May, M., Bonald, T., Bolot, J.: Analytic evaluation of RED performance. In: Proceedings of the IEEE Infocom, Tel-Aviv, Izrael (2000)Google Scholar
  22. 22.
    May, M., Diot, C., Lyles, B., Bolot, J.: Influence of active queue management parameters on aggregate traffic performance. Technical report, Institut de Recherche en Informatique et en Automatique (2000)Google Scholar
  23. 23.
    Ning, W., Shuqing, W.: Neuro-intelligent coordination control for a unit power plant. In: IEEE International Conference on Intelligent Processing Systems (Cat. No. 97TH8335), vol. 1, pp. 750–753 (1997)Google Scholar
  24. 24.
    Paxson, V.: Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic. ACM SIGCOMM Comput. Commun. Rev. 27(5), 5–18 (1997)CrossRefGoogle Scholar
  25. 25.
    Ping, Y.D., Wang, N.: A PID controller with neuron tuning parameters for multi-model plants. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), vol. 6, pp. 3408–3411 (2004)Google Scholar
  26. 26.
    Podlubny, I.: Fractional order systems and \({PI}^\lambda {D}^\mu \) controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sawicki, M., Kwiecień, A.: Unexpected anomalies of isochronous communication over USB 3.1 Gen 1. Comput. Stand. Interfaces. 49, 67–70 (2017)CrossRefGoogle Scholar
  28. 28.
    Sun, J., Zukerman, M.: An adaptive neuron AQM for a stable internet. In: Akyildiz, I.F., Sivakumar, R., Ekici, E., Oliveira, J.C., McNair, J. (eds.) NETWORKING 2007. LNCS, vol. 4479, pp. 844–854. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72606-7_72CrossRefGoogle Scholar
  29. 29.
    Zheng, B., Atiquzzaman, M.: A framework to determine the optimal weight parameter of RED in next generation internet routers. Technical report, The University of Dayton, Department of Electrical and Computer Engineering (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Theoretical and Applied InformaticsPolish Academy of SciencesGliwicePoland

Personalised recommendations