Advertisement

Querying Fuzzy Spatiotemporal Data Using XQuery

  • Zongmin MaEmail author
  • Luyi Bai
  • Li Yan
Chapter
  • 11 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 894)

Abstract

How to accurately handle query criteria based on user’s preferences has become a key technology for querying fuzzy spatiotemporal data, typically collected by modern monitoring devices such as GPS receivers and sensors. However, although fuzzy logic is incorporated in querying fuzzy spatiotemporal data and querying fuzzy data in XML, relatively little work has been carried out in querying fuzzy spatiotemporal in XML. In this paper, we propose an approach for querying fuzzy spatiotemporal data using XQuery. On the basis of its architecture, we make extensions to XQuery language. The extensions consist of the new xs: truth data type intended to represent gradual truth degrees, and the new Val element and the new Poss attribute to handle satisfaction degrees. Furthermore, fuzzy spatiotemporal linguistic terms are extended to declare fuzzy terms and use them in query expressions. Additionally, FLWOR are extended to support fuzzy spatiotemporal queries. After extensions of XQuery on fuzzy spatiotemporal data, we present real case query examples, discuss crucial details of their processing, and present evaluations of each query example. Finally, the comparative study demonstrates the advantages of our approach.

References

  1. Adeli, H., & Jiang, X. (2003). Neuro-fuzzy logic model for freeway work zone capacity estimation. Journal of Transportation Engineering, 129(5), 484–493.CrossRefGoogle Scholar
  2. Adeli, H., & Jiang, X. (2006). Dynamic fuzzy wavelet neural network model for structural system identification. Journal of Structural Engineering, 132(1), 102–111.CrossRefGoogle Scholar
  3. Bennett, B., Cohn, A. G., Wolter, F., & Zakharyaschev, M. (2002). Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence, 17(3), 239–251.CrossRefGoogle Scholar
  4. Berzal, F., Cubero, J. C., Marín, N., Vila, M. A., Kacprzyk, J., & Zadrożny, S. (2007). A general framework for computing with words in object-oriented programming. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(supp01), 111–131.CrossRefGoogle Scholar
  5. Bordogna, G., Pagani, M., Pasi, G., & Villa, R. (2006). A flexible news filtering model exploiting a hierarchical fuzzy categorization. In Proceedings of the 2006 International Conference on Flexible Query Answering Systems (pp. 170–184). Berlin, Heidelberg: Springer.Google Scholar
  6. Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G., & Spoletini, P. (2009). A fuzzy extension of the XPath query language. Journal of Intelligent Information Systems, 33(3), 285–305.CrossRefGoogle Scholar
  7. Chamberlin, D. (2002). XQuery: An XML query language. IBM Systems Journal, 41(4), 597–615.CrossRefGoogle Scholar
  8. Chen, Y., & Revesz, P. (2003). Querying spatiotemporal XML using DataFox. In Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence (pp. 301–309). Halifax, Canada: IEEE.Google Scholar
  9. Claramunt, C., & Thériault, M. (1995). Managing time in GIS an event-oriented approach. In Recent Advances in Temporal Databases (pp. 23–42). Berlin, Heidelberg: Springer.Google Scholar
  10. Deng, S. S., Xia, L. H., & Fang, W. (2009). Analysis of spatio-temporal characteristics of urban land cover and its landscape pattern: a case study in NanHai district of Foshan city. In Proceedings of the 2009 Joint Urban Remote Sensing Event (pp. 1–9). Shanghai, China: IEEE.Google Scholar
  11. Du, Z., Jeong, Y. S., Jeong, M. K., & Kong, S. G. (2012). Multidimensional local spatial autocorrelation measure for integrating spatial and spectral information in hyperspectral image band selection. Applied Intelligence, 36(3), 542–552.CrossRefGoogle Scholar
  12. Franceschet, M., Montanari, A., & Gubiani, D. (2007). Modeling and validating spatio-temporal conceptual schemas in XML schema. In Proceedings of the 18th International Workshop on Database and Expert Systems Applications (pp. 25–29). Regensburg, Germany: IEEE.Google Scholar
  13. Freitag, S., Graf, W., & Kaliske, M. (2011). Recurrent neural networks for fuzzy data. Integrated Computer-Aided Engineering, 18(3), 265–280.CrossRefGoogle Scholar
  14. Goncalves, M., & Tineo, L. (2010). Fuzzy XQuery. In Soft Computing in XML Data Management (pp. 133–163). Berlin, Heidelberg: Springer.Google Scholar
  15. Huang, B., Yi, S., & Chan, W. T. (2004). Spatio-temporal information integration in XML. Future Generation Computer Systems, 20(7), 1157–1170.CrossRefGoogle Scholar
  16. Jiang, X., & Adeli, H. (2003). Fuzzy clustering approach for accurate embedding dimension identification in chaotic time series. Integrated Computer-Aided Engineering, 10(3), 287–302.CrossRefGoogle Scholar
  17. Jiang, X., & Adeli, H. (2008). Dynamic fuzzy wavelet neuroemulator for non-linear control of irregular building structures. International Journal for Numerical Methods in Engineering, 74(7), 1045–1066.CrossRefGoogle Scholar
  18. Karim, A., & Adeli, H. (2002). Comparison of fuzzy-wavelet radial basis function neural network freeway incident detection model with California algorithm. Journal of Transportation Engineering, 128(1), 21–30.CrossRefGoogle Scholar
  19. Liu, X., & Wan, Y. (2010). Storing spatio-temporal data in XML native database. In Proceedings of the 2010 2nd International Workshop on Database Technology and Applications (pp. 1–4). Wuhan, China: IEEE.Google Scholar
  20. Ma, Z. M., Liu, J., & Yan, L. (2010). Fuzzy data modeling and algebraic operations in XML. International Journal of Intelligent Systems, 25(9), 925–947.zbMATHGoogle Scholar
  21. Ma, Z. M., Zhang, F., Yan, L., & Cheng, J. (2011). Extracting knowledge from fuzzy relational databases with description logic. Integrated Computer-Aided Engineering, 18(2), 181–200.CrossRefGoogle Scholar
  22. Mehrotra, R., & Sharma, A. (2009). Evaluating spatio-temporal representations in daily rainfall sequences from three stochastic multi-site weather generation approaches. Advances in Water Resources, 32(6), 948–962.CrossRefGoogle Scholar
  23. Meteorological Observations of Hong Kong in 2011. http://www.weather.gov.hk/wxinfo/pastwx/ywx2011.html.
  24. Öztarak, H. (2006). Flexible querying using structural and event based multimodal video data model. In Proceedings of the 2006 International Conference on Flexible Query Answering Systems (pp. 75–86). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  25. Polyzotis, N., Garofalakis, M., & Ioannidis, Y. (2004). Approximate XML query answers. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (pp. 263–274). Paris, France: ACM.Google Scholar
  26. Reuter, U. (2011). A fuzzy approach for modelling non-stochastic heterogeneous data in engineering based on cluster analysis. Integrated Computer-Aided Engineering, 18(3), 281–289.CrossRefGoogle Scholar
  27. Rizzolo, F., & Vaisman, A. A. (2008). Temporal XML: Modeling, indexing, and query processing. The VLDB Journal, 17(5), 1179–1212.CrossRefGoogle Scholar
  28. Rodrigues, R. D., Cruz, A. J. O., & Cavalcante, R. T. (2009). Aliança: A proposal for a fuzzy database architecture incorporating XML. Fuzzy Sets and Systems, 160(2), 269–279.MathSciNetCrossRefGoogle Scholar
  29. Rokni, S., & Fayek, A. R. (2010). A multi-criteria optimization framework for industrial shop scheduling using fuzzy set theory. Integrated Computer-Aided Engineering, 17(3), 175–196.CrossRefGoogle Scholar
  30. Schneider, M. (2001). A design of topological predicates for complex crisp and fuzzy regions. In Proceedings of the 2001 International Conference on Conceptual Modeling (pp. 103–116). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  31. Seto, J., Clement, S., Duong, D., Kianmehr, K., & Alhajj, R. (2009). Fuzzy query model for XML documents. In Proceedings of the 2009 International Conference on Intelligent Data Engineering and Automated Learning (pp. 333–340). Berlin, Heidelberg: Springer.Google Scholar
  32. Sözer, A., Yazıcı, A., Oğuztüzün, H., & Petry, F. E. (2010). Querying fuzzy spatiotemporal databases: Implementation issues. In Uncertainty Approaches for Spatial Data Modeling and Processing (pp. 97–116). Berlin, Heidelberg: Springer.Google Scholar
  33. Sözer, A., Yazıcı, A., Oğuztüzün, H., & Taş, O. (2008). Modeling and querying fuzzy spatiotemporal databases. Information Sciences, 178(19), 3665–3682.CrossRefGoogle Scholar
  34. Wattamwar, S. S., & Ghosh, H. (2008). Spatio-temporal query for multimedia databases. In Proceedings of the 2nd ACM Workshop on Multimedia Semantics (pp. 48–55). Vancouver, Canada: ACM.Google Scholar
  35. Yan, L., & Ma, Z. M. (2012). Comparison of entity with fuzzy data types in fuzzy object-oriented databases. Integrated Computer-Aided Engineering, 19(2), 199–212.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.College of Information Science and EngineeringNortheastern University (Qinhuangdao)QinhuangdaoChina
  3. 3.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations