Online Auction and Optimal Stopping Game with Imperfect Observation

  • Vladimir Mazalov
  • Anna IvashkoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)


The paper examines a multi-stage game-theoretic model of an auction where the participants (players) set minimum threshold price levels above which they are ready to sell. Price offerings are a sequence of independent and identically distributed random variables. A two-person game in which each player is interested in selling at a price higher than the competitor’s is considered. Optimal threshold pricing strategies and expected payoffs of the players are determined. Numerical modeling results are presented.


Optimal stopping Imperfect observation Zero-sum game Auction Game with priority 


  1. 1.
    Solan, E., Vieille, N.: Quitting games. Math. Oper. Res. 26(2), 265–285 (2001). Scholar
  2. 2.
    Sofronov, G.: An optimal sequential procedure for a multiple selling problem with independent observations. Eur. J. Oper. Res. 225(2), 332–336 (2013). Scholar
  3. 3.
    Immorlica, N., Kleinberg, R., Mahdian, M.: Secretary problems with competing employers. In: Spirakis, P., Mavronicolas, M., Kontogiannis, S. (eds.) WINE 2006. LNCS, vol. 4286, pp. 389–400. Springer, Heidelberg (2006). Scholar
  4. 4.
    Alpern, S., Katrantzi, I., Ramsey, D.: Partnership formation with age-dependent preferences. Eur. J. Oper. Res. 225(1), 91–99 (2013). Scholar
  5. 5.
    Whitmeyer, M.: A competitive optimal stopping game. B.E. J. Theor. Econ. 18(1), 1–15 (2018). Scholar
  6. 6.
    Riedel, F.: Optimal stopping with multiple priors. Econometrica 77(3), 857–908 (2009). Scholar
  7. 7.
    Harrell, G., Harrison, J., Mao, G., Wang, J.: Online auction and secretary problem. In: International Conference on Scientific Computing, pp. 241–244 (2015)Google Scholar
  8. 8.
    Seregina, T., Ivashko, A., Mazalov, V.: Optimal stopping strategies in the game “the price is right”. Proc. Steklov Inst. Math. 307(Suppl. 1), 1–15 (2019)Google Scholar
  9. 9.
    Mazalov, V., Ivashko, A.: Equilibrium in \(n\)-person game of showcase-showdown. Probab. Eng. Inform. Sci. 24, 397–403 (2010). Scholar
  10. 10.
    Tenorio, R., Cason, T.N.: To spin or not to spin? Natural and laboratory experiments from “the price is right”. Econ. J. 112(476), 170–195 (2002). Scholar
  11. 11.
    Bennett, R.W., Hickman, K.A.: Rationality and the “price is right”. J. Econ. Behav. Organ. 21(1), 99–105 (1993). Scholar
  12. 12.
    Porosiński, Z.: Full-information best choice problems with imperfect observation and a random number of observations. Zastos. Matem. 21, 179–192 (1991)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sakaguchi, M.: Best choice problems with full information and imperfect observation. Math. Japonica 29, 241–250 (1984)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Enns, E., Ferenstein, E.: On a multi-person time-sequential game with priorities. Sequential Anal. 6, 239–256 (1987). Scholar
  15. 15.
    Neumann, P., Porosinski, Z., Szajowski, K.: On two person full-information best choice problem with imperfect information. In: Petrosjan, L.A., Mazalov, V.V. (eds.) Game Theory and Application II, pp. 47–55. Nova Science Publishers, New York (1996)Google Scholar
  16. 16.
    Mazalov, V., Neumann, P., Falko, I.: Optimal stopping game with imperfect information. Far-Eastern Math. Rep. 6, 74–86 (1998)Google Scholar
  17. 17.
    Porosiński, Z., Szajowski, K.: Random priority two-person full-information best choice problem with imperfect observation. Applicationes Mathematicae 27(3), 251–263 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ivashko, E., Tchernykh, A., Ivashko, A., Safonov, G.: Cost-efficient strategy in clouds with spot price uncertainty. Matematicheskaya Teoriya Igr i Ee Prilozheniya 11(3), 5–30 (2019)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Applied Mathematical Research of the Karelian Research Centre of the Russian Academy of SciencesPetrozavodskRussia
  2. 2.School of Mathematics and StatisticsQingdao University, Institute of Applied Mathematics of ShandongQingdaoChina

Personalised recommendations