Advertisement

Online Auction and Optimal Stopping Game with Imperfect Observation

  • Vladimir Mazalov
  • Anna IvashkoEmail author
Conference paper
  • 305 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12033)

Abstract

The paper examines a multi-stage game-theoretic model of an auction where the participants (players) set minimum threshold price levels above which they are ready to sell. Price offerings are a sequence of independent and identically distributed random variables. A two-person game in which each player is interested in selling at a price higher than the competitor’s is considered. Optimal threshold pricing strategies and expected payoffs of the players are determined. Numerical modeling results are presented.

Keywords

Optimal stopping Imperfect observation Zero-sum game Auction Game with priority 

References

  1. 1.
    Solan, E., Vieille, N.: Quitting games. Math. Oper. Res. 26(2), 265–285 (2001).  https://doi.org/10.1287/moor.26.2.265.10549MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Sofronov, G.: An optimal sequential procedure for a multiple selling problem with independent observations. Eur. J. Oper. Res. 225(2), 332–336 (2013).  https://doi.org/10.1016/j.ejor.2012.09.042MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Immorlica, N., Kleinberg, R., Mahdian, M.: Secretary problems with competing employers. In: Spirakis, P., Mavronicolas, M., Kontogiannis, S. (eds.) WINE 2006. LNCS, vol. 4286, pp. 389–400. Springer, Heidelberg (2006).  https://doi.org/10.1007/11944874_35CrossRefGoogle Scholar
  4. 4.
    Alpern, S., Katrantzi, I., Ramsey, D.: Partnership formation with age-dependent preferences. Eur. J. Oper. Res. 225(1), 91–99 (2013).  https://doi.org/10.1016/j.ejor.2012.09.012MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Whitmeyer, M.: A competitive optimal stopping game. B.E. J. Theor. Econ. 18(1), 1–15 (2018).  https://doi.org/10.1515/bejte-2016-0128MathSciNetCrossRefGoogle Scholar
  6. 6.
    Riedel, F.: Optimal stopping with multiple priors. Econometrica 77(3), 857–908 (2009).  https://doi.org/10.3982/ECTA7594MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Harrell, G., Harrison, J., Mao, G., Wang, J.: Online auction and secretary problem. In: International Conference on Scientific Computing, pp. 241–244 (2015)Google Scholar
  8. 8.
    Seregina, T., Ivashko, A., Mazalov, V.: Optimal stopping strategies in the game “the price is right”. Proc. Steklov Inst. Math. 307(Suppl. 1), 1–15 (2019)Google Scholar
  9. 9.
    Mazalov, V., Ivashko, A.: Equilibrium in \(n\)-person game of showcase-showdown. Probab. Eng. Inform. Sci. 24, 397–403 (2010).  https://doi.org/10.1017/S0269964810000045MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tenorio, R., Cason, T.N.: To spin or not to spin? Natural and laboratory experiments from “the price is right”. Econ. J. 112(476), 170–195 (2002).  https://doi.org/10.1111/1468-0297.0j678CrossRefGoogle Scholar
  11. 11.
    Bennett, R.W., Hickman, K.A.: Rationality and the “price is right”. J. Econ. Behav. Organ. 21(1), 99–105 (1993).  https://doi.org/10.1016/0167-2681(93)90042-NCrossRefGoogle Scholar
  12. 12.
    Porosiński, Z.: Full-information best choice problems with imperfect observation and a random number of observations. Zastos. Matem. 21, 179–192 (1991)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sakaguchi, M.: Best choice problems with full information and imperfect observation. Math. Japonica 29, 241–250 (1984)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Enns, E., Ferenstein, E.: On a multi-person time-sequential game with priorities. Sequential Anal. 6, 239–256 (1987).  https://doi.org/10.1080/07474948708836129MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Neumann, P., Porosinski, Z., Szajowski, K.: On two person full-information best choice problem with imperfect information. In: Petrosjan, L.A., Mazalov, V.V. (eds.) Game Theory and Application II, pp. 47–55. Nova Science Publishers, New York (1996)Google Scholar
  16. 16.
    Mazalov, V., Neumann, P., Falko, I.: Optimal stopping game with imperfect information. Far-Eastern Math. Rep. 6, 74–86 (1998)Google Scholar
  17. 17.
    Porosiński, Z., Szajowski, K.: Random priority two-person full-information best choice problem with imperfect observation. Applicationes Mathematicae 27(3), 251–263 (2000)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ivashko, E., Tchernykh, A., Ivashko, A., Safonov, G.: Cost-efficient strategy in clouds with spot price uncertainty. Matematicheskaya Teoriya Igr i Ee Prilozheniya 11(3), 5–30 (2019)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Applied Mathematical Research of the Karelian Research Centre of the Russian Academy of SciencesPetrozavodskRussia
  2. 2.School of Mathematics and StatisticsQingdao University, Institute of Applied Mathematics of ShandongQingdaoChina

Personalised recommendations