Advertisement

Molecular Origins and Mechanisms of Fish Antifreeze Evolution

  • C.-H. Christina ChengEmail author
  • Xuan Zhuang
Chapter
  • 18 Downloads

Abstract

Independent evolution of distinctive types of antifreeze glycoprotein (AFGP) and peptides (AFP) in various polar and subpolar bony fish lineages bespeaks the breath of evolutionary ingenuity in converging on a similar life-preserving solution under extreme selective pressures from lethal, icy freezing marine conditions. Fish AF(G)Ps represent clear examples of a single adaptive genotype conferring a crucial fitness phenotype in a clear causal manner, which are exceptionally rare in evolutionary biology. Studies of the antifreeze function have richly enhanced our understanding of this new form of biochemical and physiological adaptation to extreme cold in marine vertebrate ectotherm. Additionally, the diverse AF(G)P genotypes are genetic novelties, and studies of their evolution have richly informed the field of molecular evolution on the array of innovative processes by which new genes arose, from classical evolution through gene duplication, to creating protein-coding gene from entirely noncoding DNA. This chapter reviews the origins and molecular mechanisms of fish AF(G)P genes that have been deduced in the past three decades and outstanding uncertainties, narrated as a historical account, with relevant environmental, organismal, physiological, and evolutionary considerations.

Keywords

Antifreeze evolution Polar adaptation Genetic novelty Molecular evolution De novo genes 

References

  1. Albers CN, Bjørn-Mortensen M, Hansen PE, Ramløv H, Sørensen T (2007) Purification and structural analysis of a type III antifreeze protein from the european eelpout Zoarces viviparus. Cryo Lett 28:51–60Google Scholar
  2. Anderson ME (1994) Systematics and osteology of the Zoarcidae (Teleostei: Perciformes). In: Icthyological bulletin, vol 60. J.L.B. Smith Institute of Ichthyology, Grahamstown, pp 1–120. http://vital.seals.ac.za:8080/vital/access/manager/Repository/vital:15033Google Scholar
  3. Andriashev AP (ed) (1970) Cryopelagic fishes in the Arctic and Antarctic and their significance in polar ecosystems. Academic Press, LondonGoogle Scholar
  4. Baardsnes J, Davies PL (2001) Sialic acid synthase: the origin of fish type III antifreeze protein? Trends Biochem Sci 26:468–469PubMedGoogle Scholar
  5. Barry RG (1989) The present climate of the Arctic Ocean and possible past and future states. In: Herman Y (ed) The Arctic seas: climatology, oceanography, geology, and biology. Van Nostrand Reinhold, New YorkGoogle Scholar
  6. Barsukov VV (1986) Anarhichadidae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the North-eastern Atlantic and the Mediterranean. UNESCO, Paris, pp 1113–1116Google Scholar
  7. Betenbaugh MJ, Yin B, Blake E, Kristoffersen L, Narang S, Viswanathan K (2014) N-Acetylneuraminic acid synthase (NANS). In: Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T (eds) Handbook of glycosyltransferases and related genes. Springer, TokyoGoogle Scholar
  8. Bredow M, Walker VK (2017) Ice-binding proteins in plants. Front Plant Sci 8:2153PubMedPubMedCentralGoogle Scholar
  9. Carr SM, Marshall HD (2008) Intraspecific phylogeographic genomics from multiple complete mtDNA genomes in Atlantic cod (Gadus morhua): origins of the “Codmother,” transatlantic vicariance and midglacial population expansion. Genetics 180:381–389PubMedPubMedCentralGoogle Scholar
  10. Carrete Vega G, Wiens JJ (2013) Why are there so few fish in the sea? Proc R Soc B 279:2323–2329Google Scholar
  11. Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci 107:5423PubMedGoogle Scholar
  12. Chaw RC, Saski CA, Hayashi CY (2017) Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization. Insect Biochem Mol Biol 81:80–90PubMedGoogle Scholar
  13. Chen L, DeVries AL, Cheng C-HC (1997a) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816Google Scholar
  14. Chen L, DeVries AL, Cheng C-HC (1997b) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci USA 94:3817–3822PubMedGoogle Scholar
  15. Cheng C-HC (1998) Origin and mechanism of evolution of antifreeze glycoproteins in polar fishes. In: Di Prisco G, Pisano E, Clarke A (eds) Evolution of the Antarctic Ichthyofauna. Springer, Berlin, pp 311–328Google Scholar
  16. Cheng C-HC, Chen L (1999) Evolution of an antifreeze glycoprotein. Nature 40:443–444Google Scholar
  17. Cheng C-HC, DeVries AL (1989) Structures of antifreeze peptides from the antarctic eel pout, Austrolycichthys brachycephalus. Biochim Biophys Acta 997:55–64PubMedGoogle Scholar
  18. Cheng C-HC, Cziko PA, Evans CW (2006) Nonhepatic origin of notothenioid antifreeze reveals pancreatic synthesis as common mechanism in polar fish freezing avoidance. Proc Natl Acad Sci USA 103:10491–10496PubMedGoogle Scholar
  19. Cohen DM, Inada T, Iwamoto T, Scialabba N, Whitehead PJP (1990) FAO species catalogue: vol. 10 gadiform fishes of the world (order gadiformes), an annotated and illustrated catalogue of Cods. Hakes, grenadiers and other gadiform fishes known to date. FAOGoogle Scholar
  20. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950PubMedGoogle Scholar
  21. Coulson MW, Marshall HD, Pepin PC, Carr SM (2006) Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets. Genome Biol 49:1115–1130Google Scholar
  22. Cziko PA, DeVries AL, Evans CW, Cheng C-HC (2014) Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc Natl Acad Sci 111:14583–14588Google Scholar
  23. Davies PL, Graham LA (2018) Protein evolution revisited. Syst Biol Reprod Med 64:403–416PubMedGoogle Scholar
  24. de Jong WW, Lubsen NH, Kraft HJ (1994) Molecular evolution of the eye lens. Prog Retin Eye Res 13:391–442Google Scholar
  25. Deng C, Cheng C-HC, Ye H, He X, Chen L (2010) Evolution of an antifreeze protein by neofunctionalization under escape from adaptive conflict. Proc Natl Acad Sci 107:21593–21598PubMedGoogle Scholar
  26. Denstad J-P, Aunaas T, Borseth JF, Aaset AV, Zachariassen KE (1987) Thermal hysteresis antifreeze agents in fishes from Spitsbergen waters. Polar Res 5:171–174Google Scholar
  27. Desjardins M, Graham LA, Davies PL, Fletcher GL (2012) Antifreeze protein gene amplification facilitated niche exploitation and speciation in wolffish. FEBS J 279:2215–2230PubMedGoogle Scholar
  28. DeVries AL (1968) Freezing resistance in some Antractic fishes (PhD thesis). PhD thesis, Stanford UniversityGoogle Scholar
  29. DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155PubMedGoogle Scholar
  30. DeVries AL (1974) Survival at freezing temperatures. In: Malins DC, Sargent JR (eds) Biochemical and biophysical perspectives in marine biology. Academic Press, London, pp 289–330Google Scholar
  31. DeVries AL, Lin Y (1977) The role of glycoprotein antifreezes in the survival of Antarctic fishes. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf, Houston, pp 439–458Google Scholar
  32. DeVries AL, Steffensen JF (2005) The Arctic and Antarctic polar marine environments. In: Farrell AP, Steffensen JF (eds) Fish physiology. Academic Press, San Diego, pp 1–24Google Scholar
  33. DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908PubMedGoogle Scholar
  34. DeVries AL, Vandenheede J, Feeney RE (1971) Primary structure of freezing point-depressing glycoproteins. J Biol Chem 246:305–308PubMedGoogle Scholar
  35. Doucet D, Walker VK, Qin W (2009) The bugs that came in from the cold: molecular adaptations to low temperatures in insects. Cell Mol Life Sci 66:1404–1418PubMedGoogle Scholar
  36. Duman JG, DeVries AL (1975) The role of macromolecular antifreezes in cold water fishes. Comp Biochem Physiol 52A:193–199Google Scholar
  37. Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189PubMedGoogle Scholar
  38. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107Google Scholar
  39. Eastman JT (2017) Bathymetric distributions of notothenioid fishes. Polar Biol 40:2077–2095Google Scholar
  40. Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? J Fish Biol 57:84–102Google Scholar
  41. Enevoldsen LT, Heiner I, DeVries AL, Steffensen JF (2003) Does fish from the Disko Bay area of Greenland possess antifreeze proteins during the summer? Polar Biol 26:365–370Google Scholar
  42. Evans CW, Hellman L, Middleditch M, Wojnar JM, Brimble MA, Devries AL (2012) Synthesis and recycling of antifreeze glycoproteins in polar fishes. Antarct Sci 24:259–268Google Scholar
  43. Ewart KV, Fletcher GL (1990) Isolation and characterization of antifreeze proteins from smelt (Osmerus mordax) and Atlantic herring (Culpea harengus harengus). Can J Zool 68:1652–1658Google Scholar
  44. Ewart KV, Fletcher GL (1993) Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin. Mol Mar Biol Biotechnol 2:20–27PubMedGoogle Scholar
  45. Ewart KV, Rubinsky B, Fletcher GL (1992) Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochim Biophy Res Commun 185:335–340Google Scholar
  46. Ewart KV, Li Z, Yang DSC, Fletcher GL, Hew CL (1998) The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins. Biochemist 37:4080–4085Google Scholar
  47. Ewart KV, Lin Q, Hew CL (1999) Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci 55:271–283PubMedGoogle Scholar
  48. Fletcher GL, Hew CL, Li X, Haya K, Kao MH (1985) Year-round presence of high levels of plasma antifreeze peptides in a temperate fish, ocean pout (Macrozoarces americanus). Can J Zool 63:488–493Google Scholar
  49. Fletcher G, Kao M, Haya K (2011) Seasonal and phenotypic variations in plasma protein antifreeze levels in a population of marine fish, sea raven (Hemitripterus americanus). Can J Fish Aquat Sci 41:819–824Google Scholar
  50. Gauthier SY, Scotter AJ, Lin F-H, Baardsnes J, Fletcher GL, Davies PL (2008) A re-evaluation of the role of type IV antifreeze protein. Cryobiology 57:292–296PubMedGoogle Scholar
  51. Gong Z, Fletcher GL, Hew CL (1992) Tissue distribution of fish antifreeze protein mRNAs. Can J Zool 70:810–814Google Scholar
  52. Gradinger RR, Bluhm BA (2004) In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the high Arctic Canada Basin. Polar Biol 27:595–603Google Scholar
  53. Graham LA, Davies PL (2005) Glycine-rich antifreeze proteins from snow fleas. Science 310:461–461Google Scholar
  54. Graham LA, Lougheed SC, Ewart KV, Davies PL (2008) Lateral transfer of a lectin-like antifreeze protein gene in fishes. PLoS One 3(7):e2616PubMedPubMedCentralGoogle Scholar
  55. Graham LA, Li J, Davidson WS, Davies PL (2012) Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes. BMC Evol Biol 12:190PubMedPubMedCentralGoogle Scholar
  56. Graham LA, Hobbs RS, Fletcher GL, Davies PL (2013) Helical antifreeze proteins have independently evolved in fishes on four occasions. PLoS One 8(12):e81285PubMedPubMedCentralGoogle Scholar
  57. Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138:330–340PubMedPubMedCentralGoogle Scholar
  58. Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617PubMedGoogle Scholar
  59. Herberg S, Gert KR, Schleiffer A, Pauli A (2018) The Ly6/uPAR protein bouncer is necessary and sufficient for species-specific fertilization. Science 361:1029–1033Google Scholar
  60. Hew CL, Slaughter D, Fletcher GL, Joshi S (1981) Antifreeze glycoproteins in the plasma of Newfoundland Atlantic cod (Gadus morhua). Can J Zool 59:2186–2192Google Scholar
  61. Hew CL, Slaughter D, Joshi S, Fletcher GL, Ananthanarayanan VS (1984) Antifreeze polypeptides from the Newfoundland Ocean pout, Macrozoarces americanus: presence of multiple and compositionally diverse components. J Comp Physiol B155:81–88Google Scholar
  62. Hew CL, Wang N-C, Joshi S, Fletcher GL, Scott GK, Hayes PH, Buettner B, Davies PL (1988) Multiple genes provide the basis for antifreeze protein diversity and dosage in the ocean pout, Macrozoarces americanus. J Biol Chem 263:12049–12055PubMedGoogle Scholar
  63. Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DS (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889PubMedPubMedCentralGoogle Scholar
  64. Howe GJ (1991) Biogeography of gadoid fishes. J Biogeogr 18:595–622Google Scholar
  65. Hsiao K-C, Cheng C, Fernandes IE, Detrich HW, DeVries AL (1990) An antifreeze glycopeptide gene from the Antarctic cod Notothenia coriiceps neglecta encodes a polyprotein of high peptide copy number. Proc Natl Acad Sci 87:9265–9269PubMedGoogle Scholar
  66. Huang HH, Liao HK, Chen YJ, Hwang TS, Lin YH, Lin CH (2005) Structural characterization of sialic acid synthase by electrospray mass spectrometry - a tetrameric enzyme composed of dimeric dimers. J Am Soc Mass Spectrom 16:324–332PubMedGoogle Scholar
  67. Hunt BM, Hoefling K, Cheng C-HC (2003) Annual warming episodes in seawater temperatures in McMurdo Sound in relationship to endogenous ice in notothenioid fish. Antarct Sci 15:333–338Google Scholar
  68. Jacob F (1977) Evolution and tinkering. Science 196:1161–1166PubMedGoogle Scholar
  69. Jensen LE, Thiel S, Petersen TE, Jensenius JC (1997) A rainbow trout lectin with multimeric structure. Comp Biochem Physiol B Biochem Mol Biol 116:385–390PubMedGoogle Scholar
  70. Jin Y, DeVries AL (2006) Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation. Comp Biochem Physiol 76B:560–600Google Scholar
  71. Kadler KE, Baldock C, Bella J, Boot-Handford RP (2007) Collagens at a glance. J Cell Sci 120:1955PubMedGoogle Scholar
  72. Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326Google Scholar
  73. Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography. J Geophys Res 82:3843–3860Google Scholar
  74. Knight CA, Devries AL (1989) Melting inhibition and superheating of ice by an antifreeze Glycopeptide. Science 245:505–507Google Scholar
  75. Kurlansky M (1997) Cod: a biography of the fish that changed the world. Penguin Books, New YorkGoogle Scholar
  76. La Mesa M, Eastman JT, Vacchi M (2004) The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review. Polar Biol 27:321–338Google Scholar
  77. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, WR MC, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921PubMedGoogle Scholar
  78. Lin Y, Duman JG, DeVries AL (1972) Studies on the structure and activity of low molecular weight glycoproteins from an antarctic fish. Biochem Biophys Res Commun 46:87–92PubMedGoogle Scholar
  79. Liu Y, Li Z, Lin Q, Kosinski J, Seetharaman J, Bujnicki JM, Sivaraman J, Hew C-L (2007) Structure and evolutionary origin of Ca2+-dependent herring type II antifreeze protein. PLoS One 2:e548PubMedPubMedCentralGoogle Scholar
  80. Livermore R, Nankivell A, Eagles G, Morris P (2005) Paleogene opening of Drake passage. Earth Planet Sci Lett 236:459–470Google Scholar
  81. Lopes-Ferreira M, Magalhães GS, Fernandez JH, de Junqueira-de-Azevedo ILM, Le Ho P, Lima C, Valente RH, Moura-da-Silva AM (2011) Structural and biological characterization of Nattectin, a new C-type lectin from the venomous fish Thalassophryne nattereri. Biochimie 93:971–980PubMedGoogle Scholar
  82. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155Google Scholar
  83. Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20:544–549PubMedGoogle Scholar
  84. Maslin MA, Li XS, Loutre MF, Berger A (1998) The contribution of orbital forcing to the progressive intensification of northern hemisphere glaciation. Quat Sci Rev 17:411–426Google Scholar
  85. Matschiner M, Hanel R, Salzburger W (2011) On the origin and trigger of the Notothenioid adaptive radiation. PLoS One 6:e18911PubMedPubMedCentralGoogle Scholar
  86. McLysaght A, Guerzoni D (2015) New genes from non-coding sequence: the role of de novo protein-coding genes in eukaryotic evolutionary innovation. Philos Trans R Soc B 370:20140332Google Scholar
  87. McLysaght A, Hurst LD (2016) Open questions in the study of de novo genes: what, how and why. Nat Rev Genet 17:579–579Google Scholar
  88. Nicodemus-Johnson J, Silic S, Ghigliotti L, Pisano E, Cheng C-HC (2011) Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic fish Dissostichus mawsoni (Norman). Genomics.  https://doi.org/10.1016/j.ygeno.2011.06.002
  89. Nishimiya Y, Kondo H, Yasui M, Sugimoto H, Noro N, Sato R, Suzuki M, Miura A, Tsuda S (2006) Crystallization and preliminary X-ray crystallographic analysis of Ca2+-independent and Ca2+-dependent species of the type II antifreeze protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:538–541PubMedPubMedCentralGoogle Scholar
  90. Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008) Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from Longsnout poacher, Brachyopsis rostratus. J Mol Biol 382:734–746PubMedGoogle Scholar
  91. O’Grady SM, Schrag JD, Raymond JA, DeVries AL (1982) Comparison of antifreeze glycopeptides from Arctic and Antarctic fishes. J Exp Zool 224:177–185Google Scholar
  92. Ohno S (1970) Evolution by gene duplication. Springer, BerlinGoogle Scholar
  93. Osuga DT, Feeney RE (1978) Antifreeze glycoproteins from Arctic fish. J Biol Chem 253:5338–5343PubMedGoogle Scholar
  94. Patil JG, Khoo HW (1996) Nuclear internalization of foreign DNA by zebrafish spermatozoa and its enhancement by electroporation. J Exp Zool 274:121–129PubMedGoogle Scholar
  95. Petzel DH, Reisman HM, DeVries AL (1980) Seasonal variation of antifreeze peptide in the winter flounder, Pseudopleuronectes americanus. J Exp Zool 211:63–69Google Scholar
  96. Piatigorsky J (1998) Multifunctional lens crystallins and corneal enzymes. More than meets the eye. Ann N Y Acad Sci 842:7–15PubMedGoogle Scholar
  97. Præbel K, Ramløv H (2005) Antifreeze activity in the gastrointestinal fluids of Arctogadus glacialis (Peters 1874) is dependent upon food type. J Exp Biol 208:2609–2613PubMedGoogle Scholar
  98. Prosser CL (1973) Water: osmotic balance; hormonal regulation. In: Prosser CL (ed) Comparative animal physiology. Saunders, Philadelphia, pp 1–78Google Scholar
  99. Raymond JA (1992) Glycerol is a colligative antifreeze in some northern fishes. J Exp Zool 262:347–352Google Scholar
  100. Raymond JA (1993) Glycerol and water balance in a near-isosmotic teleost, winter-acclimatized rainbow smelt. Can J Zool 71:1849–1854Google Scholar
  101. Raymond JA, DeVries AL (1972) Freezing behavior of fish blood glycoproteins with antifreeze properties. Cryobiology 9:541–547PubMedGoogle Scholar
  102. Raymond JA, DeVries AL (1977) Adsorption-inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593PubMedGoogle Scholar
  103. Raymond JA, Lin Y, DeVries AL (1975) Glycoprotein and protein antifreezes in two Alaskan fishes. J Exp Zool 193:125–130PubMedGoogle Scholar
  104. Reisman HM, Kao MH, Fletcher GL (1984) Antifreeze glycoprotein in a southern population of Atlantic tomcod, Microgadus tomcod. Comp Biochem Physiol 78A:445–447Google Scholar
  105. Robins CR, Ray GC (1986) A field guide to Atlantic coast fishes of North America. Houghton Mifflin Company, BostonGoogle Scholar
  106. Russell S, Young KM, Smith M, Hayes MA, Lumsden JS (2008) Cloning, binding properties, and tissue localization of rainbow trout (Oncorhynchus mykiss) ladderlectin. Fish Shellfish Immunol 24:669–683PubMedGoogle Scholar
  107. Schlötterer C (2015) Genes from scratch–the evolutionary fate of de novo genes. Trends Genet 31:215–219PubMedPubMedCentralGoogle Scholar
  108. Scholander PF, van Dam L, Kanwisher JW, Hammel HT, Gordon MS (1957) Supercooling and osmoregulation in arctic fish. J Cell Comp Physiol 49:5–24Google Scholar
  109. Schrag JD, Cheng C-HC, Panico M, Morris HR, DeVries AL (1987) Primary and secondary structure of antifreeze peptides from arctic and antarctic zoarcid fishes. Biochim Biophys Acta 915:357–370PubMedGoogle Scholar
  110. Scott GK, Hew CL, Davies PL (1985) Antifreeze proteins genes are tandemly linked and clustered in the genome of the genome of the winter flounder. Proc Natl Acad Sci USA 82:2613–2617PubMedGoogle Scholar
  111. Shier WT, DeVries AL (1975) Carbohydrate of antifreeze glycoproteins from an Antarctic fish. FEBS Lett 54:135–138Google Scholar
  112. Shier WT, Lin Y, DeVries AL (1972) Structure and mode of action of glycoproteins from Antarctic fishes. Biochim Biophys Acta 263:406–413PubMedGoogle Scholar
  113. Slaughter D, Fletcher GL, Ananthanarayanan VS, Hew CH (1981) Antifreeze proteins from the sea raven, Hemitripterus americanus. J Biol Chem 256:2022–2026PubMedGoogle Scholar
  114. Smith K, Spadafora C (2005) Sperm-mediated gene transfer: applications and implications. BioEssays 27:551–562PubMedGoogle Scholar
  115. Sorhannus U (2012) Evolution of type II antifreeze protein genes in teleost fish: a complex scenario involving lateral gene transfers and episodic directional selection. Evol Bioinform 8:535–544Google Scholar
  116. Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2009) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188Google Scholar
  117. Tautz D (2014) The discovery of de novo gene evolution. Perspect Biol Med 57:149–161PubMedGoogle Scholar
  118. Tautz D, Domazet-Lošo T (2011) The evolutionary origin of orphan genes. Nat Rev Genet 12:692–702PubMedGoogle Scholar
  119. Venugopal T, Anathy V, Kirankumar S, Pandian TJ (2004) Growth enhancement and food conversion efficiency of transgenic fish Labeo rohita. J Exp Zool A Comp Exp Biol 301A:477–490Google Scholar
  120. Wang X, DeVries AL, Cheng C-HC (1995a) Antifreeze peptide heterogeneity in an Antarctic eel pout includes an unusually large major variant comprised of two 7 kDa type III AFPs linked in tandem. Biochim Biophys Acta 1247:163–172PubMedGoogle Scholar
  121. Wang X, DeVries AL, Cheng C-HC (1995b) Genomic basis for antifreeze peptide heterogeneity and abundance in an Antarctic eel pout: gene structures and organization. Mol Mar Biol Biotechnol 4:135–147PubMedGoogle Scholar
  122. Yamashita Y, Miura R, Takemoto Y, Tsuda S, Kawahara H, Obata H (2003) Type II antifreeze protein from a mid-latitude freshwater fish, Japanese smelt (Hypomesus nipponensis). Biosci Biotechnol Biochem 67:461–466PubMedGoogle Scholar
  123. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedGoogle Scholar
  124. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217PubMedGoogle Scholar
  125. Zhuang X, Yang C, Fevolden S-E, Cheng CC (2012) Protein genes in repetitive sequence-antifreeze glycoproteins in Atlantic cod genome. BMC Genomics 13:293PubMedPubMedCentralGoogle Scholar
  126. Zhuang X, Murphy KR, Ghigliotti L, Pisano E, Cheng CC, (2018) Reconstruction of the repetitive antifreeze genomic loci in the cold-water gadids Boreogadus saida and Microgadus tomcod. Mar Genomics 39:73–84Google Scholar
  127. Zhuang X, Yang C, Murphy KR, Cheng CHC (2019) Molecular mechanism and history of non-sense to sense evolution of antifreeze glycoprotein gene in northern gadids. Proc Natl Acad Sci 116:4400–4405Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Evolution, Ecology & BehaviorUniversity of IllinoisUrbana-ChampaignUSA
  2. 2.Department of Ecology & EvolutionUniversity of ChicagoChicagoUSA

Personalised recommendations