Advertisement

A Framework to Create Conversational Agents for the Development of Video Games by End-Users

  • Rubén Baena-PerezEmail author
  • Iván Ruiz-Rube
  • Juan Manuel Dodero
  • Miguel Angel Bolivar
Conference paper
  • 62 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1173)

Abstract

Video game development is still a difficult task today, requiring strong programming skills and knowledge of multiple technologies. To tackle this problem, some visual tools such as Unity or Unreal have appeared. These tools are effective and easy to use, but they are not entirely aimed at end-users with little knowledge of software engineering. Currently, there is a resurgence in the use of chatbots thanks to the recent advances in fields such as artificial intelligence or language processing. However, there is no evidence about the use of conversational agents for developing video games with domain-specific languages (DSLs). This work states the following two hypotheses: (i) Conversational agents based on natural language can be used to work with DSL for the creation of video games; (ii) these conversational agents can be automatically created by extracting the concepts, properties and relationships from their abstract syntax. To demonstrate the hypotheses, we propose and detail the implementation of a framework to work with DSLs through a chatbot, its implementation details and a systematic method to automate its construction. This approach could be also suitable for other disciplines, in addition to video games development.

Keywords

Video games End-User Development Conversational agents Model-Driven Engineering Domain Specific Languages Chatbots 

References

  1. 1.
  2. 2.
    Eclipse Modeling Framework (EMF). https://www.eclipse.org/modeling/emf/
  3. 3.
  4. 4.
    Game engines how do they work? (2019). https://unity3d.com/what-is-a-game-engine
  5. 5.
    Al-Zubaide, H., Issa, A.A.Y.: OntBot: ontology based chatbot. In: International Symposium on Innovations in Information and Communications Technology, pp. 7–12 (2011)Google Scholar
  6. 6.
    Bock, B.C., et al.: Exercise videogames, physical activity, and health: Wii heart fitness: a randomized clinical trial. Am. J. Prev. Med. 56, 501–511 (2019)CrossRefGoogle Scholar
  7. 7.
    Bracq, M.S., et al.: Learning procedural skills with a virtual reality simulator: an acceptability study. Nurse Educ. Today 79(May), 153–160 (2019)CrossRefGoogle Scholar
  8. 8.
    Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice. Morgan Claypool, San Rafael (2012)CrossRefGoogle Scholar
  9. 9.
    Brandtzaeg, P.B., Følstad, A.: Why people use chatbots. In: Kompatsiaris, I., et al. (eds.) INSCI 2017. LNCS, vol. 10673, pp. 377–392. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70284-1_30CrossRefGoogle Scholar
  10. 10.
    Burnett, M.: What is end-user software engineering and why does it matter? In: Pipek, V., Rosson, M.B., de Ruyter, B., Wulf, V. (eds.) IS-EUD 2009. LNCS, vol. 5435, pp. 15–28. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00427-8_2CrossRefGoogle Scholar
  11. 11.
    Dörner, C., Yetim, F., Pipek, V., Wulf, V.: Supporting business process experts in tailoring business processes. Interact. Comput. 23(3), 226–238 (2011)CrossRefGoogle Scholar
  12. 12.
    Errattahi, R., Hannani, A.E., Ouahmane, H.: Automatic speech recognition errors detection and correction: a review. Procedia Comput. Sci. 128, 32–37 (2018)CrossRefGoogle Scholar
  13. 13.
    Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional, Boston (2010)Google Scholar
  14. 14.
    Gaouar, L., Benamar, A., Le Goaer, O., Biennier, F.: HCIDL: Human-computer interface description language for multi-target, multimodal, plastic user interfaces. Future Comput. Inform. J. 3(1), 110–130 (2018)CrossRefGoogle Scholar
  15. 15.
    González García, C., Núñez-Valdez, E.R., Moreno-Ger, P., González Crespo, R., Pelayo G-Bustelo, B.C., Cueva Lovelle, J.M.: Agile development of multiplatform educational video games using a domain-specific language. Univ. Access Inf. Soc. 18(3), 599–614 (2019)CrossRefGoogle Scholar
  16. 16.
    Jain, A., Kulkarni, G., Shah, V.: Natural language processing. Int. J. Comput. Sci. Eng. 6, 7 (2018)Google Scholar
  17. 17.
    Jolak, R., Vesin, B., Chaudron, M.R.V.: Using voice commands for UML modelling support on interactive whiteboards: insights & experiences. In: CIbSE 2017 - XX Ibero-American Conference on Software Engineering, pp. 85–98 (2017)Google Scholar
  18. 18.
    Ko, A., et al.: The state of the art in end-user software engineering. ACM Comput. Surv. 43(3), 1–44 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Maceli, M.G.: Tools of the trade: a survey of technologies in end-user development literature. In: Barbosa, S., Markopoulos, P., Paternò, F., Stumpf, S., Valtolina, S. (eds.) IS-EUD 2017. LNCS, vol. 10303, pp. 49–65. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58735-6_4CrossRefGoogle Scholar
  20. 20.
    Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. 37(4), 316–344 (2005)CrossRefGoogle Scholar
  21. 21.
    Núñez-Valdez, E.R., García-Díaz, V., Lovelle, J.M.C., Achaerandio, Y.S., González-Crespo, R.: A model-driven approach to generate and deploy videogames on multiple platforms. J. Ambient Intell. Humaniz. Comput. 8(3), 435–447 (2017)CrossRefGoogle Scholar
  22. 22.
    Pane, J., Myers, B.: More natural programming languages and environments. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development. Human-Computer Interaction Series, vol. 9, pp. 31–50. Springer, Dordrecht (2006).  https://doi.org/10.1007/1-4020-5386-X_3CrossRefGoogle Scholar
  23. 23.
    Pérez-Soler, S., Guerra, E., de Lara, J.: Collaborative modeling and group decision making using chatbots in social networks. IEEE Softw. 35(6), 48–54 (2018)CrossRefGoogle Scholar
  24. 24.
    Rosenblatt, L.: VocalIDE: an IDE for programming via speech recognition. In: Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 417–418. ACM (2017)Google Scholar
  25. 25.
    Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25 (2003)CrossRefGoogle Scholar
  26. 26.
    Solís-Martínez, J., Espada, J.P., García-Menéndez, N., Pelayo G-Bustelo, B.C., Cueva Lovelle, J.M.: VGPM: using business process modeling for videogame modeling and code generation in multiple platforms. Comput. Stand. Interfaces 42, 42–52 (2015)CrossRefGoogle Scholar
  27. 27.
    Vaziri, M., Mandel, L., Shinnar, A., Siméon, J., Hirzel, M.: Generating chat bots from web API specifications. In: Proceedings of the ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, vol. 14, pp. 44–57 (2017)Google Scholar
  28. 28.
    Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven engineering. IEEE Softw. 31(3), 79–85 (2014)CrossRefGoogle Scholar
  29. 29.
    Wijman, T.: Mobile revenues account for more than 50 of the global games market as it reaches 137.9 billion in 2018 (2018). https://newzoo.com/insights/articles/global-games-market-reaches-137-9-billion-in-2018-mobile-games-take-half/
  30. 30.
    Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer, Heidelberg.  https://doi.org/10.1007/978-3-319-63519-4. http://gameaibook.orgCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of CadizCádizSpain

Personalised recommendations