The Auditory System



The ear or vestibulocochlear organ is composed of external, middle and inner parts. The external ear consists of the auricle and the external acoustic meatus with the outer layer of the tympanic membrane. The middle ear is formed by the tympanic cavity, the auditory ossicles and the inner layer of the tympanic membrane. The inner ear comprises the labyrinth, a series of fluid-filled spaces in the petrous part of the temporal bone. The auditory part of the inner ear consists of the cochlea with the organ of Corti, which contains hair cells as auditory receptors (► Sect. 7.2). Receptors sensitive to high frequencies are located near the cochlear base and those sensitive to low frequencies near the apex of the cochlea. The hair cells are innervated by the peripheral processes of bipolar ganglion cells in the spiral ganglion. Their central processes form the cochlear division of the vestibulocochlear nerve and terminate in the cochlear nuclei (► Sect. 7.3). The principal auditory pathway passes from the cochlea, via the cochlear nuclei, the inferior colliculus and the medial geniculate body (the MGB), to the contralateral auditory cortex on the dorsal surface of the superior temporal gyrus (► Sect. 7.4). Each MGB is bilaterally innervated, so that each hemisphere receives cochlear input bilaterally. All of the components of the auditory pathway are tonotopically organized. ► Section 7.5 includes a brief discussion of the descending auditory system. The English terms of the Terminologia Neuroanatomica are used throughout.

At birth, humans have about 20,000 inner and outer hair cells in the organ of Corti which often do not last a lifetime as they do not regenerate when lost. By the age of 65–75 years, many individuals have a bilateral, high-frequency progressive hearing loss known as presbycusis associated with hair cell attrition. Hair cell loss is the most common cochlear defect causing hearing impairment in presbycusis and noise-induced hearing loss. Hearing disorders due to brain stem lesions are rare because of the bilateral projections of the central auditory pathways. Midline pontine tegmental lesions may result in impaired sound localization due to interruption of the input of the superior olivary complex. Disorders of auditory perception may follow strokes in the territory of the internal carotid arteries or of the vertebrobasilar system. The central disorders of auditory perception may result from lesions of either the right, the left or both cerebral hemispheres, usually involving parietotemporal cortical areas as illustrated in Clinical cases.


  1. Adams JC (1986) Neuronal morphology of the human cochlear nucleus. Arch Otol Head Neck Surg 112:1253–1261Google Scholar
  2. Alain C, Arnott SR, Hevenor S, Graham S, Grand CL (2001) ‘What’ and ‘where’ in the human auditory system. Proc Natl Acad Sci U S A 98:12301–12306PubMedPubMedCentralGoogle Scholar
  3. Amunts K, Morosan P, Hilbig H, Zilles K (2012) Auditory system. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1270–1300Google Scholar
  4. Augustin J, Guegan-Massardier E, Levillain D et al (2001) Musical hallucinosis following infarction of the right middle cerebral artery. Rev Neurol (Paris) 157:289–292Google Scholar
  5. Ayotte J, Peretz I, Hyde K (2000) Congenital amusia: a group study of adults afflicted with a music-specific disorder. Brain 125:238–251Google Scholar
  6. Bendor D, Wang X (2006) Cortical representations of pitch in monkeys and humans. Curr Opin Neurobiol 16:391–399PubMedPubMedCentralGoogle Scholar
  7. Binder JR, Rao SM, Hammeke TA, Yetkin FZ, Jasmanowicz A, Bandettini PA et al (1994) Functional magnetic resonance imaging of human auditory cortex. Ann Neurol 35:662–672PubMedGoogle Scholar
  8. Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17:353–362PubMedPubMedCentralGoogle Scholar
  9. Binder JR, Frost JA, Hammeke TA, Bellrowan PSF, Springer JA, Kaufman JN, Possing ET (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528PubMedGoogle Scholar
  10. Borg E (1973) On the neuronal organization of the acoustic middle ear reflex. A physiological and anatomical study. Brain Res 49:101–123PubMedGoogle Scholar
  11. Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol Suppl 236:1–135Google Scholar
  12. Brewer AA, Barton B (2016) Maps of the auditory cortex. Annu Rev Neurosci 39:385–407PubMedPubMedCentralGoogle Scholar
  13. Brodal A (1981) Neurological Anatomy, in relation to clinical medicine, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  14. Brödel M (1946) Three unpublished drawings of the anatomy of the human ear. Saunders, PhiladelphiaGoogle Scholar
  15. Brodmann K (1908) Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die Cortexgliederung des Menschen. J Psychol Neurol (Lpz) 10:231–246Google Scholar
  16. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig; English translation by LJ Garey (1999) Brodmann’s localisation in the cerebral cortex. Imperial College Press, LondonGoogle Scholar
  17. Brown SDM, Hardisty-Hughes RE, Mbura P (2008) Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat Rev Genet 9:277–290PubMedGoogle Scholar
  18. Burton H, Jones EG (1976) The posterior thalamic region and its cortical projection in New World and Old World monkeys. J Comp Neurol 168:249–301PubMedGoogle Scholar
  19. Cambier J, Decroix JP, Masson C (1987) Auditory hallucinations in lesions of the brain stem. Rev Neurol (Paris) 150:255–262Google Scholar
  20. Casseday JH, Neff WD (1975) Auditory localization: role of auditory pathways in the brain stem of the cat. J Neurophysiol 38:852–858Google Scholar
  21. Chiry O, Tardif E, Magistretti PJ, Clarke S (2003) Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci 17:397–410PubMedGoogle Scholar
  22. Clarke S, Bellmann-Thiran A, Maeder P, Adriani M, Vernet O, Regli L et al (2002) What and where in human audition: selective deficits following focal hemispheric lesions. Exp Brain Res 147:8–15PubMedGoogle Scholar
  23. Corwin JT, Warchol ME (1991) Auditory hair cells: structure, function, development, and regeneration. Annu Rev Neurosci 14:301–333PubMedGoogle Scholar
  24. Dejerine J (1895) Anatomie des centres nerveux, Tome 1. Reuff, ParisGoogle Scholar
  25. Devlin JT, Sillery EL, Hall DA, Hobden P, Behrens TE, Nunes RG et al (2006) Reliable identification of the auditory thalamus using multi-modal structural analyses. Neuroimage 30:1112–1120PubMedPubMedCentralGoogle Scholar
  26. Di Salle F, Formisano E, Seifritz E, Linden DE, Scheffler SC et al (2001) Functional fields in human auditory cortex revealed by time-resolved fMRI without interference of EPI noise. NeuroImage 13:328–338PubMedGoogle Scholar
  27. Dorsaint-Pierre R, Penhune VB, Watkins KE, Neelin P, Lerch JP, Bouffard M et al (2006) Asymmetries of the planum temporale and Heschl’s gyrus: relationship to language lateralization. Brain 129:1164–1176PubMedGoogle Scholar
  28. Duvernoy HM (1995) The human brain stem and cerebellum: surface, structure, vascularization and three-dimensional sectional anatomy with MRI. Springer, Wien/New YorkGoogle Scholar
  29. Elberling C, Bak C, Kofoed B, Lebech J, Saermark K (1982) Auditory magnetic fields. Source localization and tonotopic organization in the right hemisphere of human brain. Scand Audiol 10:203–207Google Scholar
  30. Evers S, Ellger T (2004) The clinical spectrum of musical hallucinations. J Neurol Sci 227:55–65PubMedGoogle Scholar
  31. Ferrier D (1875) Experiments on the brain of monkeys. Proc R Soc Lond B23:409–432Google Scholar
  32. Fisher CM, Tapia J (1987) Lateral medullary infarction extending to the lower pons. J Neurol Neurosurg Psychiatry 50:620–624PubMedPubMedCentralGoogle Scholar
  33. FitzPatrick KS, Imig IJ (1980) Auditory cortico-cortical connections in the owl monkey. J Comp Neurol 192:589–610PubMedGoogle Scholar
  34. Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmark des Menschen aufgrund entwicklungsgeschichtlicher Untersuchungen. Engelmann, LeipzigGoogle Scholar
  35. Flock Å (1980) Contractile proteins in hair cells. Hear Res 2:411–412PubMedGoogle Scholar
  36. Flock Å, Flock B, Fridberger A, Scarfone E, Ulfendahl M (1999) Supporting cells contribute to control of hearing sensitivity. J Neurosci 19:4498–4507PubMedPubMedCentralGoogle Scholar
  37. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Uğurbil K, Goebel R (2003) Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–869PubMedGoogle Scholar
  38. Fritzsch B, Elliott KL (2018) Auditory nomenclature: combining name recognition with anatomical description. Front Neuroanat 12:99PubMedPubMedCentralGoogle Scholar
  39. Frost JA, Binder JR, Springer JA, Hammeke TA, Bellrowan PS, Rao SM, Cox RW (1999) Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain 122:190–208Google Scholar
  40. Fukutake T, Hattori T (1998) Auditory illusions caused by a small lesion in the right medial geniculate body. Neurology 51:1469–1471PubMedGoogle Scholar
  41. Furst M, Aharonson V, Levine RA, Fullerton BC, Tadmar R, Pratt H et al (2000) Sound lateralization and interareal discrimination. Effects of brainstem infarcts and multiple sclerosis lesions. Hear Res 143:29–42PubMedGoogle Scholar
  42. Galaburda AM, Pandya DN (1983) The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey. J Comp Neurol 221:169–184PubMedGoogle Scholar
  43. Galaburda AM, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610PubMedGoogle Scholar
  44. Galaburda AM, Sanides F, Geschwind N (1978) Human brain: Cytoarchitectonic left-right asymmetries in the temporal speech region. Arch Neurol 35:812–817PubMedGoogle Scholar
  45. Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus. Acta Otolaryngol Suppl 295:1–33PubMedGoogle Scholar
  46. Geschwind N, Galaburda AM (1985) Cerebral localization: biological mechanisms, associations, and pathology. I. A hypothesis and a program for research. Arch Neurol 42:428–459PubMedGoogle Scholar
  47. Geschwind N, Levitsky W (1968) Human brain: left-right asymmetries in the temporal speech region. Science 161:186–187PubMedGoogle Scholar
  48. Griffiths TD (2000) Musical hallucinosis in acquired deafness: phenomenology and substrate. Brain 123:2065–2076PubMedGoogle Scholar
  49. Griffiths TD, Bench CJ, Frackowiak RSJ (1994) Human cortical areas selectively activated by apparent sound movement. Curr Biol 4:892–895PubMedGoogle Scholar
  50. Griffiths TD, Rees A, Witton C, Shakir RA, Henning GB, Green GGR (1996) Evidence for a sound movement area in the human cerebral cortex. Nature 3:425–427Google Scholar
  51. Griffiths TD, Bates D, Rees A, Witton C, Gholkar A, Green GGR (1997a) Sound movement detection deficit due to a brainstem lesion. J Neurol Neurosurg Psychiatry 62:522–526PubMedPubMedCentralGoogle Scholar
  52. Griffiths TD, Rees A, Witton C, Cross PM, Shakir RA, Green GGR (1997b) Spatial and temporal auditory processing deficits following right hemisphere infarction. A psychophysical study. Brain 120:785–794PubMedGoogle Scholar
  53. Griffiths TD, Rees G, Rees A, Green GGR, Witton C, Rowe D et al (1998) Right parietal cortex is involved in the perception of sound movement in humans. Nat Neurosci 1:74–79PubMedGoogle Scholar
  54. Griffiths TD, Green GGR, Rees A, Rees G (2000) Human brain areas involved in the analysis of auditory movement. Hum Brain Mapp 9:72–80PubMedPubMedCentralGoogle Scholar
  55. Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610PubMedGoogle Scholar
  56. Hackett TA, Kaas JH (2004) Auditory cortex in primates: functional subdivisions and processing streams. In: Galaburda A (ed) The cognitive neuroscience III. MIT Press, Cambridge, MA, pp 215–232Google Scholar
  57. Hackett TA, Stepniewska I, Kaas JH (1998a) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394:475–495PubMedGoogle Scholar
  58. Hackett TA, Stepniewska I, Kaas JH (1998b) Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 400:271–286PubMedGoogle Scholar
  59. Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441:197–222PubMedGoogle Scholar
  60. Hari R, Hämäläinen M, Kaukoranta E, Mäkelä J, Joutsiniemi S-L, Tiikonen J (1989) Selective listening modifies activity of the human auditory cortex. Exp Brain Res 74:463–470PubMedGoogle Scholar
  61. Hashikawa T, Molinari M, Rausell E, Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362:195–208PubMedGoogle Scholar
  62. Hayes D, Jerger J (1981) Patterns of acoustic reflex and auditory brainstem response abnormality. Acta Otolaryngol 92:199–209PubMedGoogle Scholar
  63. Heffner HE, Heffner RS (1990) Effect of bilateral auditory cortex lesions on absolute thresholds in Japanese macaques. J Neurophysiol 64:191–205PubMedGoogle Scholar
  64. Heiss W-D, Karbe H, Weber-Luxemburger G, Herholz K, Kessler J, Pietrzyk U, Pawlik G (1997) Speech-induced cerebral metabolic activation reflects recovery from aphasia. J Neurol Sci 145:213–217PubMedGoogle Scholar
  65. Henschen SE (1920) Über die Hörsphäre. J Psychol Neurol (Lpz) 22:319–473Google Scholar
  66. Hinojosa R, Seligsohn R, Lerner SA (1985) Ganglion cell counts in the cochleae of patients with normal audiograms. Acta Otolaryngol 99:8–13PubMedGoogle Scholar
  67. Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994Google Scholar
  68. Howard MA, Vokov IO, Abbas PJ, Damasio H, Ollendiek MC, Granner MA (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res 724:260–264PubMedGoogle Scholar
  69. Huang MH, Huang CC, Ryu SJ, Chu NS (1993) Sudden bilateral hearing impairment in vertebrobasilar occlusive disease. Stroke 24:132–137PubMedGoogle Scholar
  70. Ide A, Dolezal C, Fernández M, Labbé E, Mandujano R, Montes S et al (1999) Hemispheric differences in variability of fissural patterns in parasylvian and cingulate regions of human brains. J Comp Neurol 410:235–242PubMedGoogle Scholar
  71. Javad F, Warren JD, Micallef C, Thornton JS, Golay X, Yousry T, Mancini L (2013) Auditory tracts identified with combined fMRI and diffusion tractography. NeuroImage 84:562–574PubMedGoogle Scholar
  72. Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in the central auditory system. J Neurophysiol 47:987–1016PubMedGoogle Scholar
  73. Jewett RL, Romano MN, Williston JS (1970) Human auditory evoked potentials: possible brain stem components detected on the scalp. Science 167:1517–1518PubMedGoogle Scholar
  74. Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820PubMedGoogle Scholar
  75. Jones EG, Dell’Anna ME, Molinari M, Rausell E, Hashikawa T (1995) Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. J Comp Neurol 362:153–170PubMedGoogle Scholar
  76. Joris PX, van der Heijden M (2019) Early binaural hearing: the comparison of temporal differences at the two ears. Annu Rev Neurosci 42:433–457PubMedGoogle Scholar
  77. Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 97:11793–11799PubMedPubMedCentralGoogle Scholar
  78. Kaga K (2009) Central auditory pathway disorders. Springer, TokyoGoogle Scholar
  79. Kaga K, Tokoro Y, Tanaka Y, Ushijima H (1980) The progress of adrenoleukodystrophy as revealed by auditory brainstem evoked response and brainstem histology. Arch Otorhinolaryngol 228:17–27PubMedGoogle Scholar
  80. Kaga K, Iwasaki S, Tamura A, Suzuki J-I, Haebara H (1997) Temporal bone pathology of acoustic neuroma correlating with presence of electrocochleography and absence of auditory brainstem response. J Laryngol Otol 111:967–972PubMedGoogle Scholar
  81. Kaga K, Shindo M, Tanaka Y, Haebara H (2000) Neuropathology of auditory agnosia following bilateral temporal lobe lesions: a case study. Acta Otolaryngol 120:259–262PubMedGoogle Scholar
  82. Kaga K, Kurauchi T, Yumoto M, Uno A (2004) Middle-latency auditory-evoked magnetic fields in patients with auditory cortex lesions. Acta Otolaryngol 124:376–380PubMedGoogle Scholar
  83. Kaga K, Kurauchi T, Nakamura M, Shindo M, Ishii K (2005a) Magneto-encephalography and positron emission tomography studies of a patient with auditory agnosia caused by bilateral lesions confined to the auditory radiations. Acta Otolaryngol 125:1351–1355PubMedGoogle Scholar
  84. Kaga K, Tamai F, Kodama M, Kodama K (2005b) Three young adults with Pelizaeus-Merzbacher disease who showed only waves I and II in auditory brainstem responses but had good auditory perception. Acta Otolaryngol 125:1018–1023PubMedGoogle Scholar
  85. Kaga K, Shinjo Y, Enomoto C, Shindo M (2015) A case of cortical deafness and loss of vestibular and somatosensory sensations caused by cerebrovascular lesions in bilateral primary auditory cortices, auditory radiations, and postcentral gyruses – complete loss of hearing despite normal DPOAE and ABR. Acta Otolaryngol 135:389–394Google Scholar
  86. Kasai H, Asada T, Yumoto M, Jakeya J, Matsuda H (1999) Evidence for functional abnormality in the right auditory cortex during musical hallucinations. Lancet 354:1703–1705PubMedGoogle Scholar
  87. Keifer OP Jr, Gutman DA, Hecht EE, Keilholz SD, Ressler KJ (2015) A comparative analysis of mouse and human medial geniculate nucleus connectivity: a DTI and anterograde tracing study. NeuroImage 105:53–66PubMedGoogle Scholar
  88. Kikkawa Y, Seki Y, Okumura K, Ohshiba Y, Miyasaki Y, Suzuki S et al (2012) Advantages of a mouse model for human hearing impairment. Exp Anim 61:85–98PubMedGoogle Scholar
  89. Kim H-N, Kim YH, Park IY, Kim GR, Chung IH (1990) Variability of the surgical anatomy of the neurovascular complex of the cerebellopontine angle. Ann Otol Rhinol Laryngol 99:288–295PubMedGoogle Scholar
  90. Kimura RS (1975) The ultrastructure of the organ of Corti. Int Rev Cytol 42:173–222PubMedGoogle Scholar
  91. Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316PubMedGoogle Scholar
  92. Koutcherov Y, Huang XF, Halliday GM, Paxinos G (2004) Organization of human brainstem nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 267–320Google Scholar
  93. Lauter JL, Herscovitch P, Formby C, Raichle ME (1985) Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res 20:199–205PubMedGoogle Scholar
  94. Lechevalier B, Eustache F, Rossa Y (1985) Les troubles de la perception de la musique d’origine neurologique. Masson, ParisGoogle Scholar
  95. Lechevalier B, Lambert J, Moreau S, Platel H, Viader F (2007) Auditory disorders related to strokes. In: Godefroy O, Bogousslavsky J (eds) The behavioral and cognitive neurology of stroke. Cambridge University Press, Cambridge, pp 348–368Google Scholar
  96. Lee CC, Winer JA (2005) Principles governing auditory cortex connections. Cereb Cortex 15:1804–1814PubMedGoogle Scholar
  97. Lee CC, Schreiner CE, Imaizumi K, Winer JA (2004) Tonotopic and heterotopic projection systems in physiologically defined auditory cortex. Neuroscience 128:871–887PubMedGoogle Scholar
  98. Le Gros Clark WE, Russell WR (1938) Cortical deafness without aphasia. Brain 61:375–383Google Scholar
  99. Leonard CM, Puranik C, Kuldau JM, Lombardino LJ (1998) Normal variation in the frequency and location of human auditory cortex landmarks. Heschl’s gyrus: where is it? Cereb Cortex 8:397–406PubMedGoogle Scholar
  100. Levine RA, Häusler R (2001) Auditory disorders in stroke. In: Bogousslavsky J, Caplan LR (eds) Stroke syndromes, 2nd edn. Cambridge University Press, Cambridge, pp 144–161Google Scholar
  101. Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the ear. Hear Res 24:17–36PubMedGoogle Scholar
  102. Liégeois-Chauvel C, Peretz I, Babaï M, Laguitton V, Chauvel P (1998) Contribution of different cortical areas in the temporal lobes to music processing. Brain 121:1853–1867PubMedGoogle Scholar
  103. Liepmann H, Storch E (1902) Der mikroskopische Gehirnbefund bei dem Fall Gorstelle. Monatsschr Psychiatr Neurol 11:115–120Google Scholar
  104. Lockwood AH, Salvi RJ, Coad ML, Arnold SA, Wack DS, Murphy BW, Burkard RF (1999) The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities. Cereb Cortex 9:65–76PubMedGoogle Scholar
  105. Lorente de Nó R (1933) Anatomy of the eighth nerve. The central projections of the nerve endings of the internal ear. Laryngoscope 43:1–38Google Scholar
  106. Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. J Comp Neurol 285:487–513PubMedGoogle Scholar
  107. Lutkenhoner B, Steinstrater O (1998) High-precision neuromagnetic study of the functional organization of the human auditory cortex. Audiol Neurootol 3:191–213PubMedGoogle Scholar
  108. Lyon MJ (1978) The central localization of the motor neurons to the stapedius muscle in the cat. Brain Res 143:437–444PubMedGoogle Scholar
  109. Maeder PP, Meuli RA, Adriani M, Bellmann A, Fornari E, Thiran JP et al (2001) Distinct pathways involved in sound recognition and localization: a human fMRI study. NeuroImage 14:802–816PubMedGoogle Scholar
  110. Maffei C, Sarubbo S, Jovicich J (2019) A missing connection: a review of the macrostructural anatomy and tractography of the acoustic radiation. Front Neuroanat 13:27PubMedPubMedCentralGoogle Scholar
  111. Marie D, Jobard G, Crivello F, Perchey G, Petit L, Mellet E et al (2015) Descriptive anatomy of Heschl’s gyri in 430 healthy volunteers, including 198 left-handers. Brain Struct Funct 220:729–743PubMedGoogle Scholar
  112. Martin WH, Pratt H, Schweigler JW (1995) The origin of the human auditory brain stem response wave II. Electroencephalogr Clin Electrophysiol 96:357–370Google Scholar
  113. Mesulam M-M, Pandya DN (1973) The projections of the medial geniculate complex within the Sylvian fissure of the rhesus monkey. Brain Res 60:315–333PubMedGoogle Scholar
  114. Michalski N, Petit C (2019) Genes involved in the development and physiology of both the peripheral and central auditory systems. Annu Rev Neurosci 42:67–86PubMedGoogle Scholar
  115. Mizuno N, Nomura S, Konishi A, Uemura-Sumi M, Takahashi O, Yasui Y et al (1982) Localization of motoneurons innervating the tensor tympani muscle: a horseradish peroxidase study in the guinea pig and cat. Neurosci Lett 31:205–208PubMedGoogle Scholar
  116. Moller AR, Jannetta PJ (1982) Auditory evoked potentials recorded intracranially from the brainstem in man. Exp Neurol 78:144–157PubMedGoogle Scholar
  117. Moore JK (1987) The human auditory brain stem. A comparative view. Hear Res 29:1–3PubMedGoogle Scholar
  118. Moore JK (2000) Organization of the human superior olivary complex. Microsc Res Tech 51:403–412PubMedGoogle Scholar
  119. Moore JK, Linthicum FH Jr (2004) Auditory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1241–1279Google Scholar
  120. Moore JK, Osen KK (1979) The cochlear nuclei in man. Am J Anat 154:393–418PubMedGoogle Scholar
  121. Moore JK, Ponton CW, Eggermont JJ, Wu BJ-C, Huang JQ (1996) Perinatal maturation of the auditory brainstem response: changes in path length and conduction velocity. Ear Hear 17:411–418PubMedGoogle Scholar
  122. Moore JK, Simmons DD, Guan Y-L (1999) The human olivocochlear system: organization and development. Audiol Neurootol 4:311–325PubMedGoogle Scholar
  123. Morel A, Kaas JH (1992) Subdivision and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63PubMedGoogle Scholar
  124. Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459PubMedGoogle Scholar
  125. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K (2001) Human primary auditory cortex: Cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13:684–701PubMedGoogle Scholar
  126. Moskowitz N, Liu JC (1972) Central projections of the spiral ganglion of the squirrel monkey. J Comp Neurol 144:335–344PubMedGoogle Scholar
  127. Mummery CJ, Ashburner J, Scott SK, Wise RJS (1999) Functional neuroimaging of speech perception in six normal and two aphasic subjects. J Acoust Soc Am 106:449–457PubMedGoogle Scholar
  128. Nadol JB Jr (1990) Synaptic morphology of inner and outer hair cells of the human organ of Corti. J Electron Microsc Tech 15:187–196PubMedGoogle Scholar
  129. Nakahara H, Yamada S, Mizutani T, Murayama S (2000) Identification of the primary auditory field in archival human brain tissue via immunocytochemistry of parvalbumin. Neurosci Lett 286:29–32PubMedGoogle Scholar
  130. Nieuwenhuys R (1984) Anatomy of the auditory pathways, with emphasis on the brain stem. Adv Otorhinolaryngol 34:25–38PubMedGoogle Scholar
  131. Oas JG, Baloh RW (1992) Vertigo and the anterior inferior cerebellar artery syndrome. Neurology 42:2274–2279PubMedGoogle Scholar
  132. Ottaviani F, Di Girolomo S, Briglia G, De Rossi G, Di Giuda D, Di Nardo W (1997) Tonotopic organization of human auditory cortex analyzed by SPET. Audiology 36:241–248PubMedGoogle Scholar
  133. Pandya DN, Rosene DL (1993) Laminar termination patterns of thalamic, callosal, and association afferents in the primary auditory area of the rhesus monkey. Exp Neurol 119:220–234PubMedGoogle Scholar
  134. Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z Anat Entwickl-Gesch 139:127–161Google Scholar
  135. Pantev C, Bertrand O, Eulitz C, Verkindt C, Hampson S, Schuierer G, Elbert T (1995) Specific tonotopic organization of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94:26–40PubMedGoogle Scholar
  136. Pasman JW (1997) Auditory evoked responses in preterm infants. University of Nijmegen, ThesisGoogle Scholar
  137. Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36:767–776PubMedGoogle Scholar
  138. Paxinos G, Huang X-F, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 260–327Google Scholar
  139. Penagos H, Melcher JR, Oxenham AJ (2004) A neural representation of pitch salience in non-primary auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 24:6810–6815PubMedPubMedCentralGoogle Scholar
  140. Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672PubMedGoogle Scholar
  141. Peretz I (2001) Brain specialization for music: new evidence from congenital amusia. Ann N Y Acad Sci 930:153–165PubMedGoogle Scholar
  142. Peretz I (2016) Neurobiology of congenital amusia. Trends Cogn Sci 20:857–867PubMedGoogle Scholar
  143. Pfeifer RA (1920) Myelogenetisch-anatomische Untersuchungen über das kortikale Ende der Hörleitung. Abh math phys Kl Sächs Akad Wiss 37:1–54Google Scholar
  144. Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RSJ et al (1997) The structural components of music perception: a functional anatomical study. Brain 120:229–243PubMedGoogle Scholar
  145. Platel H, Baron JC, Desgranges B, Bernard F, Eustache F (2003) Semantic and episodic memory of music are subserved by distinct neural networks. NeuroImage 20:244–256PubMedGoogle Scholar
  146. Rademacher J, Caviness VS Jr, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex 3:313–329PubMedGoogle Scholar
  147. Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund H-J, Zilles K (2001a) Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13:669–683PubMedGoogle Scholar
  148. Rademacher J, Morosan P, Schleicher A, Freund H-J, Zilles K (2001b) Human primary auditory cortex in women and men. Neuroreport 12:1561–1566PubMedGoogle Scholar
  149. Rademacher J, Bürgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. NeuroImage 17:142–160PubMedGoogle Scholar
  150. Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A 97:11800–11806PubMedPubMedCentralGoogle Scholar
  151. Rauschecker JP, Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 91:2578–2589PubMedGoogle Scholar
  152. Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103PubMedGoogle Scholar
  153. Retzius G (1884) Das Gehörorgan der Wirbelthiere, vol II. Samson & Wallin, StockholmGoogle Scholar
  154. Roeser RJ, Daly DD (1974) Auditory cortex disconnection associated with thalamic tumor. A case report. Neurology 24:555–559PubMedGoogle Scholar
  155. Romanski LM, Bates JF, Goldman-Rakic PS (1999) Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J Comp Neurol 403:141–157PubMedGoogle Scholar
  156. Ross ED, Jossman PB, Bell B, Sabin T, Geschwind N (1975) Musical hallucinations in deafness. JAMA 231:620–622PubMedGoogle Scholar
  157. Sacks O (2007) Musicophilia. Tales of music and the brain. Knopf, New YorkGoogle Scholar
  158. Scheich H, Baumgart F, Gaschler-Markefski B, Tegeler C, Tempelmann C, Heinze HJ et al (1998) Functional magnetic resonance imaging of a human auditory cortex area involved in foreground-background decomposition. Eur J Neurosci 10:803–809PubMedGoogle Scholar
  159. Scherg M, von Cramon D (1985) A new interpretation of the generators of BAEP waves I-V: results of spatiotemporal dipole modeling. Electroencephalogr Clin Neurophysiol 62:290–299PubMedGoogle Scholar
  160. Schlaug G, Jäncke L, Huang Y, Steinmetz H (1995) In vivo evidence of structural brain asymmetry in musicians. Science 267:699–701PubMedGoogle Scholar
  161. Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ et al (2005) Structure and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8:1241–1247PubMedGoogle Scholar
  162. Schuknecht HF (1993) Pathology of the ear, 2nd edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  163. Schuknecht HF, Churchill JA, Doran R (1959) The localization of acetylcholinesterase in the cochlea. Arch Otolaryngol 69:549–559Google Scholar
  164. Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149:1–24PubMedGoogle Scholar
  165. Shaw M, Baker R (1983) The locations of stapedius and tensor tympani motoneurons in the cat. J Comp Neurol 216:10–19PubMedGoogle Scholar
  166. Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467PubMedGoogle Scholar
  167. Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 143:25–38Google Scholar
  168. Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Genet 27:143–149PubMedGoogle Scholar
  169. Steinmetz H, Rademacher J, Huang Y, Hefter H, Zilles K, Thron A, Freund H-J (1989) Cerebral asymmetry: MR planimetry of the human planum temporale. J Comput Assist Tomogr 13:996–1005PubMedGoogle Scholar
  170. Steinmetz H, Volkmann J, Jäncke L, Freund H-J (1991) Anatomical left-right asymmetry of language-related temporal cortex is different in left- and right-handers. Ann Neurol 29:315–319PubMedGoogle Scholar
  171. Stockard JJ, Stockard JE, Sherbrough FW (1978) Nonpathologic factors influencing brainstem auditory evoked potentials. Am J EEG Technol 18:177Google Scholar
  172. Stockard JJ, Stockard JE, Sherbrough FW (1986) Brainstem auditory evoked potentials in neurology: methodology, interpretation, and clinical application. In: Aminoff MJ (ed) Electrodiagnosis in clinical neurology, 2nd edn. Churchill Livingstone, New YorkGoogle Scholar
  173. Stone JS, Oesterle EC, Rubel EW (1998) Recent insights into regeneration of auditory and vestibular hair cells. Curr Opin Neurol 11:17–24PubMedGoogle Scholar
  174. Strominger NL (1973) The origin, course and distribution of the dorsal and intermediate acoustic striae in the rhesus monkey. J Comp Neurol 147:209–234PubMedGoogle Scholar
  175. Strominger NL, Nelson LR, Dougherty WJ (1977) Second-order auditory pathways in the chimpanzee. J Comp Neurol 172:349–365PubMedGoogle Scholar
  176. Tanaka Y, Kano T, Yoshida M, Yamadori A (1991) “So-called” cortical deafness. Clinical, neurophysiological and radiological observations. Brain 114:2385–2401PubMedGoogle Scholar
  177. Tardif E, Clarke S (2001) Intrinsic connectivity of human auditory areas: a tracing study with DiI. Eur J Neurosci 13:1045–1050PubMedGoogle Scholar
  178. ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141. (in Dutch)Google Scholar
  179. ten Donkelaar HJ, Cruysberg JRM, Pennings R, Lammens M (2014) Development and developmental disorders of the brain stem. In: ten Donkelaar HJ, Lammens M (eds) Hori a clinical neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg/New York/Dordrecht/London, pp 321–370Google Scholar
  180. ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155PubMedGoogle Scholar
  181. ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An Illustrated Terminologia Neuroanatomica. A concise encyclopedia of human neuroanatomy. Springer, ChamGoogle Scholar
  182. Terr LI, Edgerton BJ (1985) Three-dimensional reconstruction of the cochlear nuclear complex in humans. Arch Otolaryngol 111:495–501PubMedGoogle Scholar
  183. Thompson GC, Masterton RB (1978) Brainstem auditory pathways involved in reflexive head orientation to sound. J Neurophysiol 45:1183–1202Google Scholar
  184. Tian B, Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 92:2993–3013PubMedGoogle Scholar
  185. TNA (2017) Terminologia Neuroanatomica. . Federative Programme for Anatomical TerminologyGoogle Scholar
  186. Trojanowski JQ, Jacobson S (1975) Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkeys. J Comp Neurol 169:371–392Google Scholar
  187. Tzourio-Mazoyer N, Mazoyer B (2017) Variations of planum temporale asymmetries with Heschl’s gyri duplications and association with cognitive abilities: MRI investigation of 428 healthy volunteers. Brain Struct Funct 222:2711–2726PubMedGoogle Scholar
  188. Upadhyay J, Ducros M, Knaus TA, Lindgren KA, Silver A, Tager-Flusberg H, Kim D-S (2007) Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 tesla. Cereb Cortex 17:2420–2432PubMedGoogle Scholar
  189. von Economo C, Horn L (1930) Über Windungsrelief, Maβe und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede. Z Neurol Psychiatr 130:678–757Google Scholar
  190. von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin/Heidelberg/New York; English translation by LC Triarhou (2008) Atlas of cytoarchitectonics of the adult human cerebral cortex. Karger, BaselGoogle Scholar
  191. Wallace MN, Johnson PW, Palmer AR (2002) Histochemical identification of cortical areas in the auditory region of the human brain. Exp Brain Res 143:499–508PubMedGoogle Scholar
  192. Wang J, Zhang C, Wan S, Peng G (2017) Is congenital amusia a disconnection syndrome? A study combining tract- and network-based analysis. Front Hum Neurosci 11:473PubMedPubMedCentralGoogle Scholar
  193. Weeks RA, Aziz-Sultan A, Bushara KO, Tian B, Wessinger CM, Dang N et al (1999) A PET study of human auditory spatial processing. Neurosci Lett 262:155–158PubMedGoogle Scholar
  194. Weiller C, Isensee C, Rijntjes M, Huber W, Müller S, Bier D et al (1995) Recovery from Wernicke’s aphasia: a positron emission tomographic study. Ann Neurol 37:723–732PubMedGoogle Scholar
  195. Wessinger CM, Buonocore MH, Kussmaul CL, Mangun R (1997) Tonotopy in human auditory cortex examined with functional magnetic resonance imaging. Hum Brain Mapp 5:18–25PubMedGoogle Scholar
  196. Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP (2001) Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13:1–7PubMedGoogle Scholar
  197. Westerhausen R, Grüner R, Specht K, Hugdahl K (2009) Functional relevance of interindividual differences in temporal lobe callosal pathways: a DTI tractography study. Cereb Cortex 19:1322–1329PubMedGoogle Scholar
  198. Winer JA (1984) The human medial geniculate body. Hear Res 15:225–247PubMedGoogle Scholar
  199. Woods RP (1996) Correlation of brain structure and function. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods. Academic, San Diego, pp 313–341Google Scholar
  200. Zatorre RJ, Binder JR (2000) Functional and structural imaging of the human auditory system. In: Toga AW, Mazziotta JC (eds) Brain mapping: the systems. Academic, San Diego, pp 365–402Google Scholar
  201. Zatorre RJ, Evans AC, Meyer E, Giedde A (1992) Lateralization of phonetic and pitch discrimination in speech processing. Science 256:846–849PubMedGoogle Scholar
  202. Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14:1908–1919PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.935 Department of NeurologyRadboud University Medical Centre and Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
  2. 2.National Institute of Sensory OrgansNational Tokyo Medical CenterTokyoJapan

Personalised recommendations