The Reticular Formation and the Neuromodulatory Systems

  • Anja K. E. Horn
  • Veronika Němcová
  • Hans J. ten DonkelaarEmail author
  • Sebastiaan Overeem


Almost a century ago, Constantin von Economo observed that in patients with encephalitis lethargica lesions in the upper brain stem and posterior hypothalamus impaired consciousness. From lesion studies in cats and anatomical data, the idea arose that the brain stem reticular formation is the origin of the ascending reticular activating system (ARAS) that would operate through the intralaminar nuclei and activate widespread regions of the cerebral cortex. This view of the reticular formation has been extensively modified, and nowadays the reticular formation is viewed as a series of highly specific cell groups, which closely surround the individual motor and sensory nuclei of the brain stem (► Sects. 5.2 and 5.4). The diffuse system, driving arousal and consciousness, is now attributed to the neuromodulatory system, including the serotonergic raphe nuclei, the locus coeruleus and other noradrenergic or adrenergic cell groups and cholinergic cell groups, all close to the reticular formation (► Sects. 5.3 and 5.5). The English terms of the Terminologia Neuroanatomica are used throughout.

Although the basic notion of the ARAS concept that structures in the brain stem regulate states of consciousness still holds true, a much more complex picture has emerged. Experimental work in laboratory animals suggests that the following structures play key roles in the maintenance and modulation of wakefulness: cholinergic nuclei in the upper brain stem and basal forebrain; noradrenergic nuclei, in particular the locus coeruleus; a histaminergic projection from the tuberomamillary nucleus in the posterior hypothalamus; and dopaminergic and serotonergic pathways from the ventral tegmental area and raphe nuclei, respectively. These nuclei all participate in an ascending activating system to the cerebral cortex (► Sect. 5.5). The hypothalamus also contains orexinergic neurons that are crucial for maintaining normal wakefulness and a sleep-promoting region in the ventrolateral preoptic area. These groups have mutually inhibiting connections, known as the sleep switch (► Sect. 5.6). Some sleep disorders in which these structures are involved are discussed in Clinical Cases (► Sect. 5.7). Damage to the upper brain stem reticular formation is known to cause the most radical disturbance of consciousness, i.e. coma, as illustrated in several Clinical Cases (► Sect. 5.8).


  1. Aletrino MA, Vogels OJM, van Domburg PHMF, ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13:461–468PubMedGoogle Scholar
  2. Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferran JL, Martínez-de-la-Torre M, Puelles L (2013) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Funct 218:1229–1277PubMedGoogle Scholar
  3. Alstermark B, Ekerot C-F (2015) The lateral reticular nucleus; integration of descending and ascending systems regulating voluntary forelimb movements. Front Comput Neurosci 9:102PubMedPubMedCentralGoogle Scholar
  4. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller FM (2014) The GABAergic parafacial zone is a slow wave sleep-promoting center. Nat Neurosci 17:1217–1224PubMedPubMedCentralGoogle Scholar
  5. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108Google Scholar
  6. Arnulf I (2005) Excessive daytime sleepiness in parkinsonism. Sleep Med Rev 9:185–200PubMedGoogle Scholar
  7. Arnulf I, Konofal E, Merino-Andreus M, Houeto JL, Mesnage V, Welter ML et al (2002) Parkinson’s disease and sleepiness: an integral part of PD. Neurology 58:1019–1024PubMedGoogle Scholar
  8. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274PubMedGoogle Scholar
  9. Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886PubMedPubMedCentralGoogle Scholar
  10. Aston-Jones G, Waterhouse B (2016) Locus coeruleus: from global projection system to adaptive regulation of behavior. Brain Res 1645:75–78PubMedPubMedCentralGoogle Scholar
  11. Aston-Jones G, Chang C, Alexinsky T (1991) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 88:501–520PubMedGoogle Scholar
  12. Baker KG, Törk I, Hornung J-P, Halasz P (1989) The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp Brain Res 77:257–270PubMedGoogle Scholar
  13. Baker KG, Halliday GM, Törk I (1990) Cytoarchitecture of the human dorsal raphe nucleus. J Comp Neurol 301:147–161PubMedGoogle Scholar
  14. Baker KG, Halliday GM, Hornung J-P, Geffen LB, Cotton RGH, Törk I (1991) Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience 42:757–775PubMedGoogle Scholar
  15. Bassetti C (2001) Disturbances of consciousness and sleep-wake functions. In: Bogousslavsky J, Caplan LR (eds) Stroke syndromes, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  16. Bassetti C, Mathis J, Hess CW (1994a) Multimodal electrophysiological studies including motor evoked potentials in patients with locked-in syndrome: report of six patients. J Neurol Neurosurg Psychiatry 57:1403–1406PubMedPubMedCentralGoogle Scholar
  17. Bassetti C, Bogousslavsky J, Eskenasy-Cottier AC, Janzer RC, Regli FR (1994b) Spontaneous intracranial dissection in the anterior circulation. Cerebrovasc Dis 4:170–174Google Scholar
  18. Basso MA, May PJ (2017) Circuits for action and cognition: a view from the superior colliculus. Annu Rev Vis Sci 3:197–226PubMedPubMedCentralGoogle Scholar
  19. Benarroch EE (2008) The midline and intralaminar thalamic nuclei. Anatomic and functional specificity and implications in neurologic disease. Neurology 71:944–949PubMedGoogle Scholar
  20. Benarroch EE (2009) The locus ceruleus norepinephrine system. Functional organization and potential clinical significance. Neurology 73:1699–1704PubMedGoogle Scholar
  21. Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228PubMedGoogle Scholar
  22. Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Handbook of Chemical Neuroanatomy, vol 2. Elsevier, Amsterdam, pp 55–122Google Scholar
  23. Blessing WW (2004) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 464–478Google Scholar
  24. Blessing WW, Benarroch E (2012) Lower brain stem regulation of visceral, cardiovascular, and respiratory function. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 1058–1073Google Scholar
  25. Boeve B, Dickson D, Olson E, Shepard J, Silber M, Ferman T et al (2007a) Insights into REM sleep behavior disorder pathophysiology in brainstem-predominant Lewy body disease. Sleep Med 8:60–64PubMedGoogle Scholar
  26. Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE et al (2007b) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130:2770–2788PubMedGoogle Scholar
  27. Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J Comp Neurol 197:63–80PubMedGoogle Scholar
  28. Bohlen MO, Warren S, May PJ (2017) A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkey. Brain Struct Funct 221:2209–2229Google Scholar
  29. Bourgin P, Zeitzer JM, Mignot E (2008) CSF hypocretin-1 assessment in sleep and neurological disorders. Lancet Neurol 7:649–662PubMedGoogle Scholar
  30. Braak H (1970) Über die Kerngebiete des menschlichen Hirnstammes. II. Die Raphekerne. Z Zellforsch 107:123–141PubMedGoogle Scholar
  31. Braak H, Del Tredici K (2009) Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv Anat Embryol Cell Biol 201:1–119PubMedGoogle Scholar
  32. Brazier MAB (1980) Trails leading to the concept of the ascending reticular system: the state of knowledge before 1949. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited. Raven, New York, pp 31–52Google Scholar
  33. Bremer F (1935) Cerveau isolé et physiologie du sommeil. C R Soc Biol (Paris) 118:1235–1241Google Scholar
  34. Bremer F (1937) L’activité cérébral au cours du sommeil et de la narcose. Contribution à l’étude du mécanisme du sommeil. Bull Acad R Med Belg 4:68–86Google Scholar
  35. Brockhaus H (1942) Vergleichend-anatomische Untersuchungen über den Basalkernkomplex. J Psychol Neurol (Lpz) 51:57–95Google Scholar
  36. Brodal A (1957) The reticular formation of the brain stem: anatomical aspects and functional correlations. Oliver and Boyd, EdinburghGoogle Scholar
  37. Brodal A, Rossi GF (1955) Ascending fibers in brain stem reticular formation of cats. AMA Arch Neurol Psychiatry 74:68–87PubMedGoogle Scholar
  38. Brodal A, Taber E, Walberg F (1960) The raphe nuclei of the brain stem in the cat. II. Efferent connections. J Comp Neurol 114:239–259Google Scholar
  39. Bruno M-A, Majerus S, Boly M, Vanhaudenhuyse A, Schnakers C, Gossieres O et al (2012) Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J Neurol 259:1087–1098PubMedGoogle Scholar
  40. Bruno M-A, Nizzi M-C, Laureys S, Gosseries O (2016) Consciousness in the locked-in syndrome. In: Laureys S, Gosseries O, Tononi G (eds) The neurology of consciousness. Cognitive neuroscience and neuropathology, 2nd edn. Academic/Elsevier, San Diego, pp 187–202Google Scholar
  41. Buresch N (2005) Neuroanatomische Charakterisierung blickstabilisierende Neurone an der Hirnstammmittelinie der Primaten, einschliesslich des Menschen. Dissertation LMU Munich; available online at LMUGoogle Scholar
  42. Büttner-Ennever JA, Horn AKE (eds) (2014) Olszewski and Baxter: Cytoarchitecture of the human brainstem, 3rd edn. Basel, KargerGoogle Scholar
  43. Cairns H, Oldfield RC, Pennybacker JB, Whitteridge D (1941) Akinetic mutism with an epidermoid cyst of the third ventricle. Brain 64:273–290Google Scholar
  44. Caplan LR (1980) Top of the basilar syndrome. Neurology 30:72–79PubMedGoogle Scholar
  45. Chase TN, Moretti L, Prensky AL (1968) Clinical and electroencephalographic manifestations of vascular lesions of the pons. Neurology 18:357–368PubMedGoogle Scholar
  46. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451PubMedGoogle Scholar
  47. Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179–1196PubMedPubMedCentralGoogle Scholar
  48. Counts SE, Mufson EJ (2012) Locus coeruleus. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 425–438Google Scholar
  49. Cromer JA, Waitzman DM (2007) Comparison of saccade-associated neuronal activity in the primate central mesencephalic and paramedian pontine reticular formation. J Neurophysiol 98:835–850PubMedGoogle Scholar
  50. Curcio CA, Kemper T (1984) Nucleus raphe dorsalis in dementia of the Alzheimer type: neurofibrillary changes and neuronal packing density. J Neuropathol Exp Neurol 43:359–368PubMedGoogle Scholar
  51. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(Suppl 232):1–55Google Scholar
  52. Dahlström A, Fuxe K (1965) Ibid. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 64(Suppl 247):1–36Google Scholar
  53. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327PubMedPubMedCentralGoogle Scholar
  54. Dement W, Kleitman N (1955) Cyclic variations in EEG during sleep and their relation to eye movements, body mobility and dreaming. Electroencephalogr Clin Neurophysiol 9:673–690Google Scholar
  55. Dement W, Kleitman N (1957) The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J Exp Psychol 53:89–97Google Scholar
  56. Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb. Review of some functional correlates. Brain Res 93:385–398PubMedGoogle Scholar
  57. Duvernoy HM (1995) The human brain stem and cerebellum. Surface, structure, vascularization and three-dimensional sectional anatomy with MRI. Springer, Wien-New YorkGoogle Scholar
  58. Edley SM, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol 217:187–215PubMedGoogle Scholar
  59. Edlow BL, Takahashi E, Wu O, Benner T, Dai G, Bu L et al (2012) Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol 71:531–546PubMedPubMedCentralGoogle Scholar
  60. Edlow BL, Haynes RL, Takahashi E, Klein JP, Cummings P, Benner T et al (2013) Disconnection of the ascending arousal system in traumatic coma. J Neuropathol Exp Neurol 72:505–523PubMedPubMedCentralGoogle Scholar
  61. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662PubMedPubMedCentralGoogle Scholar
  62. Falck B, Hillarp N-A, Thieme G, Torp A (1962) Fluorescence of catecholamines and related compounds condensed with formaldehyde. J Histochem Cytochem 10:348–354Google Scholar
  63. Fisher CM (1977) Bilateral occlusion of basilar artery branches. J Neurol Neurosurg Psychiatry 40:1182–1189PubMedPubMedCentralGoogle Scholar
  64. Foix CE, Nicolesco J (1925) Anatomie cérébrale; les noyaux gris centraux et la région mésencéphalo-sous-optique; suivie d’un appendice sur l’anatomie pathologique de la maladie de Parkinson. Masson, ParisGoogle Scholar
  65. Forel AH (1877) Untersuchungen über die Haubenregion und ihre Verknüpfungen im Gehirne des Menschen und einiger Säugethiere, mit Beiträgen zu den Methoden der Gehirnuntersuchung. Arch Psychiatr Nervenkr 7:393–495Google Scholar
  66. French IT, Muthusamy KA (2018) A review of the pedunculopontine nucleus in Parkinson’s disease. Front Aging Neurosci 10:99PubMedPubMedCentralGoogle Scholar
  67. Fronczek R, Overeem S, Lee SYY, Hegeman IM, van Pelt J, van Duinen SG et al (2007) Hypocretin (orexin) loss in Parkinson’s disease. Brain 130:1577–1585PubMedGoogle Scholar
  68. Gelineau JBE (1880) De la narcolepsie. Gaz Hôp (Paris) 53:626–637Google Scholar
  69. Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116:225–235Google Scholar
  70. Geula C, Mesulam M-M (2012) Brainstem cholinergic systems. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 456–470Google Scholar
  71. Giolli RA, Blanks RHI, Liu F (2006) The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res 151:407–440PubMedGoogle Scholar
  72. Giorgi FS, Ryskalin L, Ruffoli R, Biagioni F, Limanaqi F, Ferrucci M (2017) The neuroanatomy of the reticular nucleus locus coeruleus in Alzheimer’s disease. Front Neuroanat 11:80PubMedPubMedCentralGoogle Scholar
  73. Goetz L, Piallat B, Bhattachariae M, Matthieu H, David O, Chabardès S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929PubMedPubMedCentralGoogle Scholar
  74. Grantyn A, Ong Meang Jacques V, Berthoz A (1987) Reticulospinal neurons participating in the control of synergic eye and head movements during orienting in the cat. II. Morphological properties as revealed by intra-axonal injections of horseradish peroxidase. Exp Brain Res 66:355–377PubMedGoogle Scholar
  75. Graybiel AM (1978) A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers. Brain Res 145:365–374PubMedGoogle Scholar
  76. Grinberg LT, Rüb U, Ferratti RE, Nitrini R, Farfel JM, Polichiso I et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416PubMedGoogle Scholar
  77. Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57PubMedGoogle Scholar
  78. Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130PubMedGoogle Scholar
  79. Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274:483–515PubMedGoogle Scholar
  80. Halliday GM (2004) Substantia nigra and locus coeruleus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 449–463Google Scholar
  81. Halliday GM, Törk I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat and human. J Comp Neurol 252:423–445PubMedGoogle Scholar
  82. Harting JA (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612PubMedGoogle Scholar
  83. Hedreen JC, Strubble RG, Whitehouse PJ, Price DL (1984) Topography of the magnocellular basal forebrain system in human brain. J Neuropathol Exp Neurol 43:1–21PubMedGoogle Scholar
  84. Hobson JA (1999) Sleep and dreaming. In: Zigmund MJ, Bloom FE, Landis SC, Roberts JL, Squire LR (eds) Fundamental Neuroscience. Academic, San Diego, pp 1207–1227Google Scholar
  85. Hobson JA, Pace-Schott EF (2002) The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 3:679–693PubMedGoogle Scholar
  86. Hobson JA, Scheibel AB (1980) The brainstem core: sensorimotor integration and behavioral state control. Neurosci Res Program Bull 18:1–73PubMedGoogle Scholar
  87. Hobson JA, Steriade M (1986) The neuronal basis of behavioral state control. In: Bloom FE (ed) Handbook of physiology, Sect 1: the nervous system, Intrinsic regulatory systems, vol IV. American Physiological Society, Bethesda, pp 701–823Google Scholar
  88. Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58PubMedGoogle Scholar
  89. Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421PubMedGoogle Scholar
  90. Holstege G, Cowie RJ (1989) Projections from the rostral mesencephalic reticular formation to the spinal cord. Exp Brain Res 75:265–279PubMedGoogle Scholar
  91. Holstege G, Kuypers HGJM (1977) Propriobulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100:239–264PubMedGoogle Scholar
  92. Holstege G, Kuypers HGJM, Dekker JJ (1977) Ibid. II. An autoradiographic tracing study in cat. Brain 100:265–286Google Scholar
  93. Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1306–1324Google Scholar
  94. Hoogendijk WJG, Pool CW, Troost D, van Zwieten E, Swaab DF (1995) Image analyser-assisted morphometry of the locus coeruleus in Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Brain 118:131–143PubMedGoogle Scholar
  95. Horn AKE (2006) The reticular formation. Prog Brain Res 151:127–155PubMedGoogle Scholar
  96. Horn AKE, Adamczyk C (2012) Reticular formation: eye movements, gaze and blinks. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 328–366Google Scholar
  97. Horn AKE, Horng A, Buresch N, Messoudi A, Hartig W (2018) Identification of functional cell groups in the abducens nucleus of monkey and human by perineuronal nets and choline acetyltransferase immunolabeling. Front Neuroanat 12:45PubMedPubMedCentralGoogle Scholar
  98. Hornung J-P (2004) Raphe nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 425–448Google Scholar
  99. Hornung J-P (2012) Raphe nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 401–424Google Scholar
  100. Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29PubMedGoogle Scholar
  101. Jang SH, Ki SH, Lim HW, Yeo SS (2014) Injury of the lower ascending reticular activating system in patients with hypoxic-ischemic brain injury: diffusion tensor imaging study. Neuroradiology 56:965–970PubMedGoogle Scholar
  102. Jellinger K (1988) The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 51:540–543PubMedPubMedCentralGoogle Scholar
  103. Jones BE (1998a) The neural basis of consciousness across the sleep-waking cycle. Adv Neurol 73:75–94Google Scholar
  104. Jones EG (1998b) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–345PubMedGoogle Scholar
  105. Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601PubMedGoogle Scholar
  106. Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154:349–377PubMedGoogle Scholar
  107. Jones BE, Yang TZ (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde axonal transport in the rat. J Comp Neurol 242:56–92PubMedGoogle Scholar
  108. Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167:385–420PubMedGoogle Scholar
  109. Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187:660–662PubMedGoogle Scholar
  110. Kohnstamm O (1899) Über Ursprungskerne spinaler Bahnen im Hirnstamm, speziell über das Atemzentrum. Arch Psychiatr Nervenkr 32:681–684Google Scholar
  111. Kohnstamm O, Quensel F (1908) Das Centrum receptorium der Formatio reticularis (Abstract). Neurol Zbl 27:1046–1047Google Scholar
  112. Kohnstamm O, Quensel F (1909) Centrum receptorium der Formatio reticularis und gekreuzt aufsteigende Bahn. Dtsch Z Nervenheilk 36:182–188Google Scholar
  113. Kokkoroyannis T, Scudder CA, Balaban CD, Highstein SM, Moschovakis AK (1996) Anatomy and physiology of the primate interstitial nucleus of Cajal. I. Efferent projections. J Neurophysiol 75:725–739PubMedGoogle Scholar
  114. Koutcherov Y, Huang X-F, Halliday G, Paxinos G (2004) Organization of human brain stem nuclei. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 267–320Google Scholar
  115. Kumral E, Bayam FE, Köken B, Erdoğan CE (2019) Clinical and neuroimaging determinants of minimally conscious and persistent vegetative states after acute stroke. J Neurocrit Care 12:37–45Google Scholar
  116. Langer TP, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25PubMedGoogle Scholar
  117. Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3:537–546PubMedGoogle Scholar
  118. Laureys S, Gosseries O, Tononi G (eds) (2016) The neurology of consciousness. Cognitive neuroscience and neuropathology, 2nd edn. Academic/Elsevier, San DiegoGoogle Scholar
  119. Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344:190–209PubMedGoogle Scholar
  120. Lavoie B, Parent A (1994b) Ibid. Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231PubMedGoogle Scholar
  121. Leontovich TA, Zhukova GP (1963) The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of carnivores. J Comp Neurol 121:347–379PubMedGoogle Scholar
  122. Levey AI, Hallanger AE, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124PubMedGoogle Scholar
  123. Lewandowsky M (1904) Untersuchungen über die Leitungsbahnen der Truncus cerebri und ihren Zusammenhang mit denen der Medulla spinalis und der Cortex cerebri. Fischer, JenaGoogle Scholar
  124. Lhermitte F, Gautier JC, Marteau R, Chain F (1963) Troubles de la conscience et mutisme akinétique. Rev Neurol (Paris) 109:115–131Google Scholar
  125. Lim AS, Lozano AM, Moro E, Hamani C, Hutchison WD, Dostrovsky JO et al (2007) Characterization of REM-sleep associated ponto-geniculo-occipital waves in the human pons. Sleep 30:823–827PubMedPubMedCentralGoogle Scholar
  126. Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 4:471–503PubMedGoogle Scholar
  127. Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27:111–122PubMedGoogle Scholar
  128. Lin JS, Sakai K, Jouvet M (1994) Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci 6:618–625PubMedGoogle Scholar
  129. Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537PubMedPubMedCentralGoogle Scholar
  130. Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1:475–486PubMedGoogle Scholar
  131. Lindsley DB, Schreiner LH, Knowles WB, Magoun MS, Magoun HW (1950) Behavioral and EEG changes following chronic brainstem lesions in the cat. Electroencephalogr Clin Neurophysiol 2:483–498PubMedGoogle Scholar
  132. Lindvall O, Björklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, Chemical pathways in the brain, vol 9. Plenum, New York, pp 139–231Google Scholar
  133. Liu AKL, Chang RC-C, Pearce RKB, Gentleman SM (2015) Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol (Berl) 129:527–540Google Scholar
  134. Llinás R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B 353:1841–1849Google Scholar
  135. Loeb C (1958) Electroencephalographic changes during the state of coma. Electroencephalogr Clin Neurophysiol 10:589–606PubMedGoogle Scholar
  136. Lorente de Nó R (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, New York, pp 291–340Google Scholar
  137. Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections in cortex: topography, morphology and collateralization. Brain Res Bull 9:287–294PubMedGoogle Scholar
  138. Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594PubMedGoogle Scholar
  139. Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D et al (2006) Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 100:271–283PubMedGoogle Scholar
  140. Luppi PH, Clement O, Sapic E, Peyron C, Gervasoni D, Leger L, Fort P (2012) Brainstem mechanisms of paradoxical (REM) sleep generation. Pflügers Arch Eur J Physiol 463:43–52Google Scholar
  141. Macchi G, Bentivoglio M (1982) The organization of the efferent projections of the thalamic intralaminar nuclei: past, present, and future of the anatomical approach. Ital J Neurol Sci 2:83–96Google Scholar
  142. Mahoney CE, Cogswell A, Koralnik IJ, Scammell PE (2019) The neurobiological basis of narcolepsy. Nat Rev Neurosci 20:83–93PubMedPubMedCentralGoogle Scholar
  143. Mann DMA, Yates PO (1983) Pathological basis for neurotransmitter changes in Parkinson’s disease. Neuropathol Appl Neurobiol 9:3–19PubMedGoogle Scholar
  144. Mann DMA, Yates PO, Hawkes J (1983) The pathology of the human locus coeruleus. Clin Neuropathol 2:1–17PubMedGoogle Scholar
  145. Marcyniuk B, Mann DMA, Yates PO (1986) Loss of nerve cells from locus coeruleus in Alzheimer’s disease is topographically arranged. Neurosci Lett 64:247–252PubMedGoogle Scholar
  146. Martin GF, Holstege G, Mehler WR (1990) Reticular formation of the pons and medulla. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 203–220Google Scholar
  147. May PJ, Warren S, Bohlen MO, Barnerssoi M, Horn AKE (2016) The central mesencephalic reticular formation projection to the Edinger-Westphal nucleus. Brain Struct Funct 221:4073–4089PubMedGoogle Scholar
  148. McCarley RW (1999) Sleep neurophysiology: basic mechanisms underlying control of wakefulness and sleep. In: Chokroverty S (ed) Sleep disorders medicine, 2nd edn. Butterworth Heinemann, Boston, pp 21–50Google Scholar
  149. McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural mathematical model. Science 189:58–60PubMedGoogle Scholar
  150. McCormick DA, Bal T (1997) Sleep and arousal: Thalamocortical mechanisms. Annu Rev Neurosci 20:185–215PubMedGoogle Scholar
  151. Meessen H, Olszewski J (1949) A cytoarchitectonic atlas of the rhombencephalon of the rabbit. Karger, BaselGoogle Scholar
  152. Mena-Segovia J, Bolam JP (2017) Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94:7–18PubMedGoogle Scholar
  153. Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 27:585–588PubMedGoogle Scholar
  154. Mesulam M-M (2000) Attentional networks, confusional states and neglect syndromes. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 174–256Google Scholar
  155. Mesulam M-M, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240PubMedGoogle Scholar
  156. Mesulam M-M, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274PubMedGoogle Scholar
  157. Mesulam M-M, Van Hoesen GW (1976) Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res 109:152–157PubMedGoogle Scholar
  158. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983a) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197PubMedGoogle Scholar
  159. Mesulam M-M, Mufson EJ, Wainer BH, Levey AI (1983b) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201PubMedGoogle Scholar
  160. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1984) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686PubMedGoogle Scholar
  161. Mesulam M-M, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 281:611–633Google Scholar
  162. Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker S (ed) Handbuch der Lehre von den Geweben des Menschen und der Thiere, vol 2. Engelmann, Leipzig, pp 694–808. (English translation by Putnam JJ, 1872: Stricker S (ed) A Manual of Histology. William Wood, New York, pp 650–766)Google Scholar
  163. Michelsen KA, Schmitz C, Steinbusch HWM (2007) The dorsal raphe nucleus – from silver stainings to a role in depression. Brain Res Rev 55:329–342PubMedGoogle Scholar
  164. Mignot E, Zeitzer JM (2007) Neurobiology of narcolepsy and hypersomnia. In: Gilman S (ed) Neurobiology of disease. Elsevier Academic, San Diego, pp 715–722Google Scholar
  165. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem SB et al (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59:1553–1562PubMedGoogle Scholar
  166. Minagar A, David NJ (1999) Bilateral infarction in the territory of the anterior cerebral arteries. Neurology 52:886–888PubMedGoogle Scholar
  167. Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168PubMedGoogle Scholar
  168. Morison RS, Dempsey EW (1942) A study of thalamocortical relations. Am J Phys 135:281–292Google Scholar
  169. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473PubMedGoogle Scholar
  170. Nakano I, Hirano A (1983) Neuron loss in the nucleus basalis of Meynert in Parkinson-dementia complex of Guam. Ann Neurol 13:87–91PubMedGoogle Scholar
  171. Nauta WJH (1946) Hypothalamic regulation of sleep in rats: an experimental study. J Neurophysiol 9:285–316PubMedGoogle Scholar
  172. Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RF (eds) Reticular formation of the brain. Little Brown, Boston, pp 3–30Google Scholar
  173. Němcová V, Petrovický P, ten Donkelaar HJ (1997) The dorsal tegmentum of the pontomesencephalic junction of the rat – immunohistochemistry (choline acetyltransferase, tyrosine hydroxylase, substance P) and NADPH-diaphorase histochemistry in frontal and horizontal sections. J Brain Res 38:231–241Google Scholar
  174. Němcová V, Petrovický P, ten Donkelaar HJ (2000) The effect of electrolytic thalamic lesions on the nitric oxide synthase (NOS) expression of neurons of the laterodorsal and pedunculopontine tegmental nuclei in rats. J Chem Neuroanat 17:227–232PubMedGoogle Scholar
  175. Newcombe VF, Williams GB, Scoffings D, Cross J, Carpenter TA, Pickard JD et al (2010) Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications. J Neurol Neurosurg Psychiatry 81:552–561PubMedGoogle Scholar
  176. Newman DB (1985a) Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei. J Hirnforsch 26:187–226PubMedGoogle Scholar
  177. Newman DB (1985b) Ibid. II. Pontine and mesencephalic nuclei. J Hirnforsch 26:385–418PubMedGoogle Scholar
  178. Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580PubMedGoogle Scholar
  179. Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system, 4th edn. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  180. Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand (Suppl 388):1–40Google Scholar
  181. Ohm TG, Heilmann R, Braak H (1989) The human oral raphe system: architectonics and neuronal types in pigment-Nissl preparations. Anat Embryol (Berl) 180:37–43Google Scholar
  182. Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, BaselGoogle Scholar
  183. Ordóñez-Rubiano E, Johnson J, Enciso-Olivera CO, Marín-Muñoz JH, Cortes-Lozano W, Baquero-Herrera PE et al (2017) Reconstruction of the ascending activating system with diffusion tensor tractography in patients with a disorder of consciousness after traumatic brain injury. Cureus 9:e1723PubMedPubMedCentralGoogle Scholar
  184. Overeem S, Mignot E, van Dijk JG, Lammers GJ (2001) Narcolepsy: clinical features, new pathophysiologic insights, and future perspectives. J Clin Neurophysiol 18:78–105PubMedGoogle Scholar
  185. Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605PubMedGoogle Scholar
  186. Panula P, Airaksinen MS, Pirvola U, Kotilainen E (1990) A histamine-containing neuronal system in human brain. Neuroscience 34:127–132PubMedGoogle Scholar
  187. Paré D, Smith Y, Parent A, Steriade M (1988) Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei. Neuroscience 25:69–86PubMedGoogle Scholar
  188. Parent A, Paré D, Smith Y, Steriade M (1988) Basal forebrain cholinergic and noncholinergic projections to the thalamus and brain stem in cats and monkeys. J Comp Neurol 277:281–301PubMedGoogle Scholar
  189. Parvizi J, Damasio AR (2003) Neuroanatomical correlates of brainstem coma. Brain 126:1524–1536PubMedGoogle Scholar
  190. Pavlasek J, Petrovický P (1994) The reticular formation and the reticulospinal system. Veda Publ House Slovak Acad Sciences, BratislavaGoogle Scholar
  191. Paxinos G, Huang X-F (1995) Atlas of the human brainstem. Academic Press, San DiegoGoogle Scholar
  192. Paxinos G, Huang X-F, Sengul G, Watson C (2012) Organization of brainstem nuclei. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 260–327Google Scholar
  193. Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8:3–32PubMedGoogle Scholar
  194. Petrovický P (1966) A comparative study of the reticular formation of the Guinea pig. J Comp Neurol 128:85–108PubMedGoogle Scholar
  195. Petrovický P (1980) Reticular formation and its raphe system. I. Cyto-architectonics with comparative aspects. Acta Univ Carol Med Monogr (Prague) 99:1–117Google Scholar
  196. Petrovický P (1981) Reticular formation and its raphe system. II. Connections with some functional aspects. Acta Univ Carol Med Monogr (Prague) 103:1–165Google Scholar
  197. Petrovický P (1990) Thalamic afferents from the brain stem. An experimental study using retrograde single and double labelling with HRP and iron-dextran in the rat. I. Medial and lateral reticular formation. J Hirnforsch 30:551–563Google Scholar
  198. Petrovický P, Kolesárová D, Slavinská V (1990) Ibid. II. Nucleus laterodorsalis and subnucleus compactus nuclei pedunculopontini. J Hirnforsch 31:375–383PubMedGoogle Scholar
  199. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMedPubMedCentralGoogle Scholar
  200. Peyron C, Faraco J, Ropers W, Ripley B, Overeem S, Charney Y et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997PubMedGoogle Scholar
  201. Plum F, Posner JB (1980) The diagnosis of stupor and coma, 3rd edn. Davis, PhiladelphiaGoogle Scholar
  202. Poirier LJ, Parent A, Marchand R, Butcher LL (1977) Morphological characteristics of the acetylcholinesterase-containing neurons in the CNS of DFP-treated monkeys. Part I. Extrapyramidal and related structures. J Neurol Sci 31:181–198PubMedGoogle Scholar
  203. Posner JB, Saper CB, Schiff ND, Plum F (2007) Plum and Posner’s diagnosis of stupor and coma, 4th edn. Oxford University Press, New YorkGoogle Scholar
  204. Probst M (1899) Über vom Vierhügel, von der Brücke und vom Kleinhirn aufsteigende Bahnen. Dtsch Z Nervenheilk 15:192–221Google Scholar
  205. Probst M (1902) Zur Kenntnis der Schleifenschicht und über centripetale Rückenmarksfasern zum Deiterschen Kern, zum Sehhügel und zur Substantia reticularis. Monatsschr Psychiatr Neurol 11:3–12Google Scholar
  206. Puelles L (2019) Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front Neuroanat 13:20PubMedPubMedCentralGoogle Scholar
  207. Quensel F, Kohnstamm O (1907) Preparate mit aktiven Zelldegenerationen nach Hirnstammverletzung beim Kaninchen. Neurol Zbl 26:1138–1139Google Scholar
  208. Ramón y Cajal S (1899–1904) Textura del Sistema Nervioso del Hombre y de los Vertebrados. Madrid (1909–1911 French version: Histologie du système nerveux de l’homme et des vertébrés, Maloine, Paris)Google Scholar
  209. Ramón y Cajal S (1900) Contribución al estudio de la via sensitiva central y de la estructura del tálamo óptico. Rev Trimestr Micrograf V:185–198Google Scholar
  210. Ramón-Moliner E, Nauta WJH (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335PubMedGoogle Scholar
  211. Ranson SW (1939) Somnolence caused by hypothalamic lesions in the monkey. Arch Neurol Psychiatr 41:1–23Google Scholar
  212. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, NIH public no 204. NIH, Washington, D.C.Google Scholar
  213. Rechtschaffen A, Siegel J (2000) Sleep and dreaming. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill, New York, pp 936–947Google Scholar
  214. Reil JC (1809) Untersuchungen über den Bau des grossen Gehirns im Menschen. Vierte Fortsetzung VIII. Arch Physiol (Halle) 9:136–146Google Scholar
  215. Ricciardo L, Sarchioto M, Morgante F (2019) Role of the pedunculopontine nucleus in sleep-wake cycle and cognition in humans: a systematic review of DBS studies. Neurobiol Dis 128:53–58Google Scholar
  216. Robertson RT, Feiner AR (1982) Diencephalic projections from the pontine reticular formation: autoradiographic studies in the cat. Brain Res 239:3–16PubMedGoogle Scholar
  217. Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528PubMedGoogle Scholar
  218. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181PubMedGoogle Scholar
  219. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedGoogle Scholar
  220. Samuels ER, Szabadi E (2008a) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol 6:235–253PubMedPubMedCentralGoogle Scholar
  221. Samuels ER, Szabadi E (2008b) Ibid., part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr Neuropharmacol 6:254–285PubMedPubMedCentralGoogle Scholar
  222. Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Higher functions of the brain, vol V. American Physiological Society, Bethesda, pp 169–210Google Scholar
  223. Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1095–1113Google Scholar
  224. Saper CB, Chelimsky TC (1984) A cytoarchitectonic and histochemical study of nucleus basalis and associated cell groups in the normal human brain. Neuroscience 13:1023–1037PubMedGoogle Scholar
  225. Saper CB, Fuller PM (2017) Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44:186–192PubMedPubMedCentralGoogle Scholar
  226. Saper CB, Petito CK (1982) Correspondence of melanin-pigmented neurons in human brain with A1-A14 catecholamine cell groups. Brain 105:87–101PubMedGoogle Scholar
  227. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731PubMedGoogle Scholar
  228. Saper CB, Lu J, Chou TC, Gooley J (2005a) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157PubMedGoogle Scholar
  229. Saper CB, Cano G, Scammell TE (2005b) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 439:92–98Google Scholar
  230. Saper CB, Scammell TE, Lu J (2005c) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263Google Scholar
  231. Scammell TE, Nishino S, Mignot E, Saper CB (2001) Narcolepsy and how CSF orexin (hypocretin) concentration after a diencephalic stroke. Neurology 56:1751–1753PubMedGoogle Scholar
  232. Scheibel AB, Scheibel ME (1958) Structural substrates for integrative patterns in the brainstem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little Brown, Boston, pp 31–55Google Scholar
  233. Schnakers C, Edlow BL, Chatelle C, Giaccino JT (2016) Minimally conscious state. In: Laureys S, Gosseries O, Tononi G (eds) The neurology of consciousness. Cognitive neuroscience and neuropathology, 2nd edn. Academic/Elsevier, San Diego, pp 167–185Google Scholar
  234. Segarra J (1970) Cerebral vascular disease and behaviour. I. The syndrome of the mesencephalic artery. Arch Neurol 22:408–418PubMedGoogle Scholar
  235. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219PubMedGoogle Scholar
  236. Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721PubMedPubMedCentralGoogle Scholar
  237. Shute CCD, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520PubMedGoogle Scholar
  238. Starzl TE, Taylor CW, Magoun HW (1951) Collateral afferent excitation of reticular formation and brain stem. J Neurophysiol 14:479–496PubMedPubMedCentralGoogle Scholar
  239. Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat – cell bodies and terminals. Neuroscience 6:557–618PubMedGoogle Scholar
  240. Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101:243–276PubMedGoogle Scholar
  241. Steriade M (2001) Impact of network activities on neuronal properties of corticothalamic systems. J Neurophysiol 86:1–39PubMedGoogle Scholar
  242. Steriade M, Llinás R (1988) The functional states of the thalamus and associated neuronal interplay. Physiol Rev 68:649–742PubMedGoogle Scholar
  243. Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New YorkGoogle Scholar
  244. Steriade M, Ropert N, Kitsikis A, Oakson G (1980) Ascending activating neuronal networks in midbrain reticular core and related rostral systems. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited. Raven, New York, pp 125–167Google Scholar
  245. Steriade M, Oakson G, Ropert N (1982) Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle. Exp Brain Res 46:37–51PubMedGoogle Scholar
  246. Steriade M, Paré D, Parent A, Smith Y (1988) Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67PubMedGoogle Scholar
  247. Steriade M, Datta S, Paré D, Oakson G, Curro-Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2549PubMedPubMedCentralGoogle Scholar
  248. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685PubMedGoogle Scholar
  249. Stumpf WE, Jennes L (1984) The A-B-C (Allocortex-brainstem-Core) circuitry of endocrine-autonomic integration and regulation: a proposed hypothesis on the anatomical functional relationships between estradiol sites of action and peptidergic-aminergic neuronal systems. Peptides 5:221–226PubMedGoogle Scholar
  250. Subramanian HH, Holstege G (2009) The nucleus retroambiguus control of respiration. J Neurosci 29:3824–3832PubMedPubMedCentralGoogle Scholar
  251. Tagliavini F, Pilleri G (1983) Neuronal counts in basal nucleus of Meynert in Alzheimer disease and in simple senile dementia. Lancet i:469–470Google Scholar
  252. Takeda N, Inagaki S, Taguchi Y, Tohyama M, Watanabe T, Wada H (1984) Origins of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Res 323:55–63PubMedGoogle Scholar
  253. Teasdale G, Jennett B (1976) Assessment and prognosis of coma after head injury. Acta Neurochir 34:45–55PubMedGoogle Scholar
  254. ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141. (in Dutch)Google Scholar
  255. ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155PubMedGoogle Scholar
  256. ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated Terminologia Neuroanatomica: a concise encyclopedia of human neuroanatomy. Springer: ChamGoogle Scholar
  257. Thannickal TC, Moore RY, Nienhuis R, Ramanathan L, Gulyani S, Aldrich M et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474PubMedPubMedCentralGoogle Scholar
  258. Thannickal TC, Siegel JM, Moore RY (2003) Pattern of hypocretin (orexin) soma and axon loss, and gliosis, in human narcolepsy. Brain Pathol 13:340–351PubMedGoogle Scholar
  259. Thannickal TC, Lai Y-Y, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130:1586–1595PubMedGoogle Scholar
  260. Thier P, Möck M (2006) The oculomotor role of the pontine nuclei and the nucleus reticularis tegmenti pontis. Prog Brain Res 151:293–320PubMedGoogle Scholar
  261. TNA (2017) Terminologia Neuroanatomica. Federative International Programme for Anatomical TerminologyGoogle Scholar
  262. Tomlinson BE, Irving D, Blessed D (1981) Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J Neurol Sci 49:419–428PubMedGoogle Scholar
  263. Törk I, Hornung J-P (1990) Raphe nuclei and the serotonergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1001–1022Google Scholar
  264. Travers JB (2015) Oromotor nuclei. In: Paxinos G (ed) The rat nervous system, 4th edn. Academic/Elsevier, Amstredam, pp 223–245Google Scholar
  265. Uchiyama M, Isse K, Tanaka K, Yokota N, Hamamoto H, Aida S et al (1995) Incidental Lewy body disease in a patient with REM sleep behavior disorder. Neurology 45:709–712PubMedGoogle Scholar
  266. Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl 367:1–48PubMedGoogle Scholar
  267. Valverde F (1961) Reticular formation of the pons and medulla oblongata. A Golgi study. J Comp Neurol 116:71–99PubMedGoogle Scholar
  268. Valverde F (1962) Reticular formation of the albino rat’s brain stem; cytoarchitecture and corticofugal connections. J Comp Neurol 119:25–53PubMedGoogle Scholar
  269. van Domburg PHMF, ten Donkelaar HJ, Notermans SLH (1996) Akinetic mutism with bithalamic infarction. Neurophysiological correlates. J Neurol Sci 139:58–65PubMedGoogle Scholar
  270. van Gehuchten A (1901) Recherches sur les voies sensitives centrales. Névraxe 3:235–261Google Scholar
  271. Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proc Natl Acad Sci U S A 111:3859–3864PubMedPubMedCentralGoogle Scholar
  272. Vertes RP (1984) Brainstem control of the events of REM sleep. Prog Neurobiol 22:241–288PubMedGoogle Scholar
  273. Vertes RP (1990a) Fundamentals of brainstem anatomy: a behavioral perspective. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 33–103Google Scholar
  274. Vertes RP (1990b) Brainstem mechanisms of slow-wave sleep and REM sleep. In: Klemm WR, Vertes RP (eds) Brainstem mechanisms of behavior. Wiley, New York, pp 535–583Google Scholar
  275. Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe in the rat. J Comp Neurol 313:643–668PubMedGoogle Scholar
  276. Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81:893–926PubMedGoogle Scholar
  277. Vertes RP, Martin GF (1988) Autoradiographic analysis of ascending projections from the pontine and mesencephalic reticular formation and the median raphe nucleus in the rat. J Comp Neurol 275:511–541PubMedGoogle Scholar
  278. Vogels OJM (1990) The nucleus basalis of Meynert complex and adjacent structures in Normal aging and Alzheimer’s disease. Thesis, University of NijmegenGoogle Scholar
  279. Vogels OJM, Broere CAJ, ter Laak HJ, ten Donkelaar HJ, Nieuwenhuys R, Schulte BPM (1990) Cell loss and shrinkage in the nucleus basalis of Meynert complex in Alzheimer’s disease. Neurobiol Aging 11:3–13PubMedGoogle Scholar
  280. von Bechterew W (1885a) Über eine bisher unbekannte Verbindung der grossen Oliven mit dem Grosshirn. Neurol Zbl 4:194–196Google Scholar
  281. von Bechterew W (1885b) Über die Längsfaserzüge der Formatio reticularis medullae oblongatae et pontis. Neurol Zbl 4:337–346Google Scholar
  282. von Economo C (1920) Die encephalitis lethargica, ihre Nachkrankheiten und ihre Behandlung. Urban & Schwarzenberg, Berlin (English translation 1931: encephalitis Lethargica: its sequelae and treatment. Oxford university press, London)Google Scholar
  283. von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259Google Scholar
  284. von Kölliker A (1896) Handbuch der Gewebelehre des Menschen, Nervensystem des Menschen und der Thiere, vol 2, 6th edn. Engelmann, LeipzigGoogle Scholar
  285. Walberg F (1952) The lateral reticular nucleus of the medulla oblongata in mammals. J Comp Neurol 96:283–343PubMedGoogle Scholar
  286. Wang N, Perkins E, Zhou L, Warren S, May PJ (2017) Reticular formation connections underlying horizontal gaze: the central mesencephalic reticular formation (cMRF) as a conduit for the collicular saccade signal. Front Neuroanat 11:36PubMedPubMedCentralGoogle Scholar
  287. Warren S, Waitzman DM, May PJ (2008) Anatomical evidence for interconnections between the central mesencephalic reticular formation and cervical spinal cord in cat and macaque. Anat Rec 291:141–160Google Scholar
  288. Watson C, Shimogori T, Puelles L (2017) Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol 525:2782–2799PubMedGoogle Scholar
  289. Watson C, Bartholomaeus C, Puelles L (2019) Time for radical changes in brainstem nomenclature – applying the lessons from developmental gene patterns. Front Neuroanat 13:10PubMedPubMedCentralGoogle Scholar
  290. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126PubMedGoogle Scholar
  291. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR (1982) Alzheimer’s disease and senile dementias: loss of neurons in the basal forebrain. Science 215:1237–1239PubMedGoogle Scholar
  292. Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol 13:243–248PubMedGoogle Scholar
  293. Winn P (1998) Frontal syndrome as a consequence of lesions in the pedunculopontine tegmental nucleus: a short theoretical review. Brain Res Bull 47:551–563PubMedGoogle Scholar
  294. Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248:234–250PubMedGoogle Scholar
  295. Woolf NJ, Harrison JB, Buchwald JS (1990) Cholinergic neurons of the feline pontomesencephalon. II. Ascending anatomical projections. Brain Res 520:55–72PubMedGoogle Scholar
  296. Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577PubMedGoogle Scholar
  297. Zeman A (2001) Consciousness. Brain 124:1263–1289PubMedGoogle Scholar
  298. Zepelin H (1983) A life span perspective on sleep. In: Mayes A (ed) Sleep mechanisms and functions in humans and animals: an evolutionary perspective. Cambridge University Press, Cambridge, pp 126–160Google Scholar
  299. Zweig RM, Whitehouse PJ, Casanova MF, Walker LC, Jankel WR, Price DL (1987) Loss of pedunculopontine neurons in progressive supranuclear palsy. Ann Neurol 22:18–25PubMedGoogle Scholar
  300. Zweig RM, Ross CA, Hedreen JC, Steele C, Cardillo JE, Whitehouse PJ et al (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol 24:233–242PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anja K. E. Horn
    • 1
  • Veronika Němcová
    • 2
  • Hans J. ten Donkelaar
    • 3
    Email author
  • Sebastiaan Overeem
    • 4
    • 5
  1. 1.Department of Anatomy and Cell Biology ILudwig-Maximilian-University, Faculty of MedicineMunichGermany
  2. 2.Department of AnatomyCharles UniversityPraha 2Czech Republic
  3. 3.935 Department of NeurologyRadboud University Medical Centre and Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
  4. 4.Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  5. 5.Sleep Medicine Centre “Kempenhaeghe”HeezeThe Netherlands

Personalised recommendations