Advertisement

Notes on Techniques

  • Hans J. ten DonkelaarEmail author
  • Jonne Doorduin
  • Marco Catani
  • Martijn P. van den Heuvel
Chapter
  • 113 Downloads

Abstract

In this introductory chapter, techniques for studying brain circuitry will be discussed. Many features of the fibre connections of the human brain and spinal cord have been elucidated by the analysis of normal preparations stained by the Weigert-Pal and Klüver-Barrera techniques in order to demonstrate the myelin sheaths around axons of neurons (► Sect. 3.2). Brain circuitry can be studied with these myelin-staining techniques, the classic Marchi and Nauta degeneration techniques and the more recent tract-tracing techniques (► Sect. 3.3), with immunohistochemistry (► Sect. 3.4) as well as with various electrophysiological techniques (► Sect. 3.5). The development of modern non-invasive imaging techniques (► Sect. 3.6) such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has greatly improved our knowledge of the circuitry of the human central nervous system (CNS). New developments in MR imaging such as diffusion MRI (dMRI; “tractography”) allow the visualization of the major fibre connections in the human CNS. These various techniques are illustrated with examples on the corticospinal tract and long association pathways. ► Section 3.7 includes a brief discussion of what became to be known as the human connectome.

References

  1. Abhinav K, Yeh F-C, Mansouri A, Zadeh G, Fernandez-Miranda JC (2015) High-definition fiber tractography for the evaluation of perilesional white matter tracts in high-grade glioma surgery. Neuro-Oncology 17:1199–1209PubMedPubMedCentralGoogle Scholar
  2. Agnesi F, Johnson MD, Vitek JL (2013) Deep brain stimulation: how does it work? Handb Clin Neurol 116:39–54PubMedGoogle Scholar
  3. Albrecht MH, Fernstrom RC (1959) A modified Nauta-Gygax method for human brain and spinal cord. Stain Technol 34:91–94PubMedGoogle Scholar
  4. Amassian VE, Quirck GJ, Stewart M (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalogr Clin Neurophysiol 77:390–401PubMedGoogle Scholar
  5. Amassian VE, Eberle L, Maccabee P, Cracco RQ (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol 85:291–301PubMedGoogle Scholar
  6. Ameis SH, Catani M (2015) Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex 62:158–181PubMedGoogle Scholar
  7. Amon A, Alesch F (2017) Systems for deep brain stimulation: review of technical features. J Neural Transm (Vienna) 124:1083–1091Google Scholar
  8. Archer DB, De V, Coombes SA (2018) A template and probabilistic atlas of the human sensorimotor tracts using diffusion MRI. Cereb Cortex 28:1685–1699PubMedGoogle Scholar
  9. Asanuma H, Sakata H (1967) Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J Neurophysiol 30:35–54Google Scholar
  10. Atluri S, Frehlich M, Mei Y, Garcia-Dominguez L, Rogasch NC, Wong W et al (2016) TMSEEG: a MATLAB-based user interface for processing electrophysiological signals during transcranial magnetic stimulation. Front Neural Circuits 10:78PubMedPubMedCentralGoogle Scholar
  11. Axer M, Amunts K, Gräβel D, Palm C, Dammers J, Axer H et al (2011a) A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54:1091–1101PubMedGoogle Scholar
  12. Axer M, Gräβel D, Kleiner M, Dammers J, Dickscheid T, Reckfort J et al (2011b) High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform 5:34PubMedPubMedCentralGoogle Scholar
  13. Axer M, Strohmer S, Gräβel D, Bücker O, Dohmen M, Reckfort J et al (2016) Estimating fiber orientation distribution functions in 3D-polarized light imaging. Front Neuroanat 10:40PubMedPubMedCentralGoogle Scholar
  14. Bandettini PA, Wong EC, Hinks RS, Tikovsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397PubMedGoogle Scholar
  15. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet:1106–1107Google Scholar
  16. Basser PJ, Mattiello J, Le Bihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267PubMedPubMedCentralGoogle Scholar
  17. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632PubMedGoogle Scholar
  18. Baumgartner C, Doppelhauer A, Deecke L, Barth DS, Zeithhofer J, Lindinger G, Sutherling WW (1991) Neuromagnetic investigation of somatotopy of human hand somatosensory cortex. Exp Brain Res 87:641–648PubMedGoogle Scholar
  19. Beach TG, McGeer EG (1987) Tract-tracing with horseradish peroxidase in the postmortem human brain. Neurosci Lett 76:37–41PubMedGoogle Scholar
  20. Beach TG, McGeer EG (1988) Retrograde filling of pyramidal neurons in postmortem human cerebral cortex using horseradish peroxidase. J Neurosci Methods 23:187–193PubMedGoogle Scholar
  21. Beck E (1950) The origin, course, and termination of the prefrontopontine tract in the human brain. Brain 73:368–391PubMedGoogle Scholar
  22. Beier K (2016) Anterograde viral tracer methods. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 203–218Google Scholar
  23. Ben-Shachar M, Dougherty RF, Wandell BA (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155Google Scholar
  24. Bentivoglio M, Cotrufo T, Ferrari S, Tesoriero C, Mariotto S, Bertini G et al (2019) The original histological slides of Camillo Golgi and his discoveries on neuronal structure. Front Neuroanat 13:3PubMedPubMedCentralGoogle Scholar
  25. Berger H (1929) Ueber das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570Google Scholar
  26. Björklund A, Hökfelt T (eds) (1983) Methods in chemical neuroanatomy, Handbook Chemical Neuroanatomy, vol 1. Elsevier, AmsterdamGoogle Scholar
  27. Blessing WW, Ding Z-Q, Li Y-W, Gierobe ZJ, Wilson AJ, Hallsworth PG, Wesselingh SL (1994) Transneuronal labelling of CNS neurons with herpes simplex virus. Prog Neurobiol 44:37–53PubMedGoogle Scholar
  28. Bodian D (1936) A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat Rec 65:89–97Google Scholar
  29. Bota M, Sporns O, Swanson LW (2015) Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci U S A:E2093–E2101Google Scholar
  30. Boucard CC (2006) Neuroimaging of visual field defects. University of Groningen, ThesisGoogle Scholar
  31. Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JBTM, Hooymans JMM, Cornelissen FW (2009) Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 132:1898–1906PubMedPubMedCentralGoogle Scholar
  32. Braak H (1980) Architectonics of the human cerebral cortex. studies in brain function, vol 4. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  33. Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMedGoogle Scholar
  34. Braak H, Braak E (1985) Golgi preparations as a tool in neuropathology with particular reference to investigations of the human telencephalic cortex. Prog Neurobiol 25:93–139PubMedGoogle Scholar
  35. Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 5:71–82PubMedGoogle Scholar
  36. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259Google Scholar
  37. Braak H, Del Tredici K (2015) Neuroanatomy and pathology of sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol 215:1–162PubMedGoogle Scholar
  38. Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzheimer’s Research 3:235–247Google Scholar
  39. Braak H, Del Tredici K, Rüb K, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211Google Scholar
  40. Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120PubMedPubMedCentralGoogle Scholar
  41. Brodal A (1939) Experimentelle Untersuchungen über retrograde Zellveränderungen in der unteren Olive nach Läsionen des Kleinhirns. Z Ges Neurol Psychiatr 166:647–704Google Scholar
  42. Brodal A (1940) Modification of Gudden method for study of cerebral localization. Arch Neurol Psychiatr 43:46–58Google Scholar
  43. Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  44. Buckner RL, Andrews-Hama JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMedGoogle Scholar
  45. Buhl EH, Lübke J (1988) Intracellular Lucifer yellow injection in fixed brain slices combined with retrograde tracing, light and electron microscopy. Neuroscience 28:3–16Google Scholar
  46. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedGoogle Scholar
  47. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349PubMedGoogle Scholar
  48. Bürgel U, Mecklenburg I, Blohm U, Zilles K (1997) Histological visualization of long fiber tracts in the white matter of adult human brains. J Brain Res 38:397–404Google Scholar
  49. Bürgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI-volume of a reference brain: position and spatial variability of the optic radiation. NeuroImage 10:89–499Google Scholar
  50. Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. NeuroImage 29:1092–1105PubMedGoogle Scholar
  51. Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA (2009) Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cent Eur Neurosurg 70:27–35PubMedGoogle Scholar
  52. Burke D, Pierrot-Deseilligny E (2010) Caveats when studying motor cortex excitability and the cortical control of movement using transcranial magnetic stimulation. Clin Neurophysiol 121:121–123PubMedGoogle Scholar
  53. Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA et al (2015) A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. NeuroImage 117:408–416PubMedPubMedCentralGoogle Scholar
  54. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623PubMedGoogle Scholar
  55. Catani M (2006) Diffusion tensor magnetic resonance imaging tractography. Curr Opin Neurol 19:599–606PubMedGoogle Scholar
  56. Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239PubMedGoogle Scholar
  57. Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press, OxfordGoogle Scholar
  58. Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16PubMedGoogle Scholar
  59. Catani MC, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C et al (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136:2619–2628PubMedPubMedCentralGoogle Scholar
  60. Cheney PD (2002) Electrophysiological methods for mapping brain motor and sensory circuits. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 189–206Google Scholar
  61. Cheney PD, Fetz EE (1985) Comparable pattern of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J Neurophysiol 53:786–804PubMedGoogle Scholar
  62. Chenot Q, Tzourio-Mazoyer N, Rheault F, Descoteaux M, Crivello F, Zago L et al (2019) A population-based atlas of the human pyramidal tract in 410 healthy participants. Brain Struct Funct 224:599–612PubMedGoogle Scholar
  63. Cherry SR, Phelps ME (2002) Imaging brain function with positron emission tomography. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 485–511Google Scholar
  64. Chiappa KH (1997) Evoked potentials in clinical medicine, 2nd edn. Raven, New YorkGoogle Scholar
  65. Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson AJ (2008) Diffusion-based tractography in neurological disorders: concept, applications and future developments. Lancet Neurol 7:715–727PubMedGoogle Scholar
  66. Clarke E, O’Malley CD (1996) The human brain and spinal cord, 2nd edn. Norman, San FranciscoGoogle Scholar
  67. Cohen D (1968) Magnetoencephalography: detection of magnetic fields produced by α rhythm currents. Science 161:778–786Google Scholar
  68. Coleman M (2005) Axon degeneration mechanisms: commonality and diversity. Nat Rev Neurosci 6:889–898PubMedGoogle Scholar
  69. Conforti L, Gilley J, Coleman MP (2014) Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15:394–406PubMedGoogle Scholar
  70. Contarino MF, Bour LJ, Verhagen R, Lourens MA, de Bie RM, van den Munckhof P, Schuurman PR (2014) Directional steering: a novel approach to deep brain stimulation. Neurology 83:1163–1169PubMedGoogle Scholar
  71. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427PubMedPubMedCentralGoogle Scholar
  72. Cowan WM (1970) Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin/Heidelberg/New York, pp 217–251Google Scholar
  73. Cowan WM, Gottlieb DL, Hendrickson AE, Price JL, Woolsey TL (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21–51PubMedGoogle Scholar
  74. Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23:1–21PubMedGoogle Scholar
  75. Cuello AC (1983) Immunohistochemistry, IBRO Handbook Series: Methods in the Neurosciences, vol 3. Wiley, ChichesterGoogle Scholar
  76. Cuello AC (ed) (1993) Immunohistochemistry II, IBRO Handbook Series: Methods in the Neurosciences, vol 14. Wiley, ChichesterGoogle Scholar
  77. Cummings TJ, Chugani DC, Shugani HT (1995) Positron emission tomography in pediatric epilepsy. Neurosurg Clin 6:465–472Google Scholar
  78. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 103:13848–13853PubMedPubMedCentralGoogle Scholar
  79. Danek A, Bauer M, Fries W (1990) Tracing of neuronal connections in the human brain by magnetic resonance imaging in vivo. Eur J Neurosci 2:112–115PubMedGoogle Scholar
  80. Darvas F, Pantaris D, Kucukaltun-Yildirim E, Leahy RM (2004) Mapping human brain function with MEG and EEG: methods and validation. NeuroImage 23(Suppl 1):S289–S299PubMedGoogle Scholar
  81. Dauguet J, Peled S, Berezowskii V, Delzescaux T, Warfield SK, Born R, Westin C-F (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. NeuroImage 37:530–538PubMedGoogle Scholar
  82. David S, Heemskerk AM, Corrivetti F, Thiebault de Schotten M, Sarubbo S, Corsini F et al (2019) The superoanterior fasciculus (SAF): A novel white matter pathway in the human brain? Front Neuroanat 13:24PubMedPubMedCentralGoogle Scholar
  83. Dawson GD (1951) A summation technique for detecting small signals in a large irregular background. J Physiol Lond 115:2P–3PPubMedGoogle Scholar
  84. Day BL, Dresslet D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989a) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol Lond 412:449–473PubMedPubMedCentralGoogle Scholar
  85. Day BL, Rothwell JC, Thompson PD, Maertens de Noordhout A, Nakashima K, Shannon K, Marsden CD (1989b) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in man. Brain 112:649–663PubMedGoogle Scholar
  86. de Lange SC, Scholtens LH, van den Berg LH, Boks MP, Bozzali M, Cahn W, et al. (2018) Shared vulnerability for connectome alterations across psychiatric and neurological brain disorders. bioRxiv. https://www.biorxiv.org/content/10.110/360586v1 Google Scholar
  87. De Luca M, Beckman CF, De Stefano N, Matthews PM, Smith SM (2006) fMRI resting state networks define distinct nodes of long distance interactions in the human brain. NeuroImage 29:1359–1367PubMedGoogle Scholar
  88. Dell’Acqua F, Catani M (2012) Structural human brain networks: hot topics in diffusion tractography. Curr Opin Neurol 25:375–383PubMedGoogle Scholar
  89. Devous MD (2002) SPECT functional brain imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 513–536Google Scholar
  90. Dumitru D, Amato AA, Zwarts M (2002) Electrodiagnostic medicine, 2nd edn. Hanley & Belfus, PhiladelphiaGoogle Scholar
  91. Dusser de Barenne JG (1916a) Recherches expérimentales sur le localisation de la sensibilité de l’écorce du cerveau. Arch Néerl Physiol 1:15–26Google Scholar
  92. Dusser de Barenne JG (1916b) Experimental researches on sensory localizations. Exp Physiol 9:355–390Google Scholar
  93. Dusser de Barenne JG, McCulloch WS (1938) Functional organization in the sensory cortex of the monkey (Macaca mulatta). J Neurophysiol 1:69–85Google Scholar
  94. Edgley SA, Eyre JA, Lemon RN, Miller S (1990) Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol Lond 425:301–320PubMedPubMedCentralGoogle Scholar
  95. Edwards MJ, Tatelli P, Rothwell JC (2008) Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol 7:827–840PubMedGoogle Scholar
  96. Einstein G (1988) Intracellular injection of Lucifer yellow into cortical neurons in lightly fixed sections and its application to human autopsy material. J Neurosci Methods 26:95–103PubMedGoogle Scholar
  97. Emerson RG, Seval M, Pedley TA (1984) Somatosensory evoked potentials following median nerve stimulation. Brain 107:169–182PubMedGoogle Scholar
  98. Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, PhiladelphiaGoogle Scholar
  99. Essayed WL, Zhang F, Unatkat P, Congrove GR, Golby AJ, O’Donnell LJ (2017) White matter tractography for neurosurgical planning: a topography-based review of the current state of the art. Neuroimage Clin 15:659–672PubMedPubMedCentralGoogle Scholar
  100. Fernandez-Miranda JC, Wang Y, Pathak S, Stefaneau L, Verstijnen T, Yeh F-C (2015) Asymmetry, connectivity, and segmentation of the arcuate fascicle in the human brain. Brain Struct Funct 220:1665–1680PubMedGoogle Scholar
  101. Ferrier D (1876) The functions of the brain. Smith, Elder and Company, LondonGoogle Scholar
  102. Fetz EE, Cheney PD (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 44:751–772PubMedGoogle Scholar
  103. Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374PubMedGoogle Scholar
  104. Fitzgerald PB (2010) TMS-EEG: a technique that has come of age? Clin Neurophysiol 121:265–267PubMedGoogle Scholar
  105. Flechsig P (1901) Development (myelogenesis) localisation of the cerebral cortex in the human subject. Lancet 2:1027–1029Google Scholar
  106. Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetische Grundlage. Thieme, LeipzigGoogle Scholar
  107. Forkel SJ, Thiebaut de Schotten M, Dell’Acqua F, Kalra L, Murphy DG, Williams SC, Catani M (2014a) Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain 137:2027–2039PubMedGoogle Scholar
  108. Forkel SJ, Thiebaut de Schotten M, Kawadler JM, Dell’Acqua F, Danek A, Catani M (2014b) The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex 56:73–84PubMedGoogle Scholar
  109. Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172Google Scholar
  110. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedGoogle Scholar
  111. Fox MD, Snyder AZ, Vincent JL, Corbetto M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678PubMedPubMedCentralGoogle Scholar
  112. Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W (eds) (2003) Human brain function, 2nd edn. Amsterdam, ElsevierGoogle Scholar
  113. Franssen H, Stegeman DF, Moleman J, Schoobaar RP (1992) Dipole modelling of median nerve SEPs in normal subjects and patients with small subcortical infarcts. Electroencephalogr Clin Neurophysiol 84:401–417PubMedGoogle Scholar
  114. Fritsch G, Hitzig E (1870) Ueber die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wiss Med 37:300–322Google Scholar
  115. Galuske R, Seehaus A, Roebroeck A (2016) Critical review and comparison of axonal structures in MRI/DTI and histology. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 337–347Google Scholar
  116. Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 17:1–92Google Scholar
  117. Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U et al (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807PubMedGoogle Scholar
  118. Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: Cytoarchitecture and regional distribution of receptor-binding sites. NeuroImage 6:27–45PubMedGoogle Scholar
  119. Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109:509–514PubMedGoogle Scholar
  120. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E et al (2016a) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentralGoogle Scholar
  121. Glasser MF, Smith SM, Marcus DS, Andersson JLR, Auerbach EJ, Behrens TEJ et al (2016b) The human connectome project’s neuroimaging approach. Nat Neurosci 19:1175–1187PubMedPubMedCentralGoogle Scholar
  122. Glees P (1946) Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropathol Exp Neurol 5:54–59PubMedGoogle Scholar
  123. Glees P, Le Gros Clark WE (1941) The termination of optic fibers in the lateral geniculate body of the monkey. J Anat (Lond) 75:295–308Google Scholar
  124. Glover JC, Petursdottir G, Jansen KS (1986) Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. J Neurosci Methods 18:243–254PubMedGoogle Scholar
  125. Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurons and their processes in fixed tissue. Development 101:697–713PubMedGoogle Scholar
  126. Golgi C (1873) Sulla struttura delle sostanza grigia dell cervello. Gazz Med Ital Lombardia 33:244–246Google Scholar
  127. Golgi C (1875) Sui gliomi dell cervello. Riv Sper Freniatria Med Leg 1:66–78Google Scholar
  128. Graf W, Gerrits N, Yatim-Dhiba N, Ugolini G (2002) Mapping the oculomotor system: the power of transneuronal labeling with rabies virus. Eur J Neurosci 15:1557–1562PubMedGoogle Scholar
  129. Grafe MR, Leonard CM (1980) Successful silver impregnation of degenerating axons after long survivals in the human brain. J Neuropathol Exp Neurol 39:555–574PubMedGoogle Scholar
  130. Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci U S A 75:5723–5726PubMedPubMedCentralGoogle Scholar
  131. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258PubMedGoogle Scholar
  132. Griffin JW, George EB, Hsieh S-T, Glass JD (1995) Axonal degeneration and disorders of the axonal cytoskeleton. In: Waxman SG, Kocsis JD, Sytys PK (eds) The axon: structure, function and pathophysiology. Oxford University Press, New York, pp 375–390Google Scholar
  133. Haddock JN, Berlin L (1950) Transsynaptic degeneration in the visual system. Arch Neurol Psychiatr 64:66–73Google Scholar
  134. Hämäläinen M, Hari R (2002) Magnetoencephalographic characterization of dynamic brain activation: basic principles and methods of data collection and source analysis. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 227–253Google Scholar
  135. Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497Google Scholar
  136. Hammerschlag R, Cyr JL, Brady ST (1994) Axonal transport and the neuronal cytoskeleton. In: Siegel GL, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. Raven, New York, pp 545–571Google Scholar
  137. Hari R (1993) Magnetoencephalography as a tool of clinical neurophysiology. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications and related fields. Williams & Wilkins, Baltimore, pp 1035–1061Google Scholar
  138. Hari R, Karhu J, Hämäläinen M, Mkuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734PubMedGoogle Scholar
  139. Harrison PJ, Hultborn H, Jankowska E, Katz R, Storai B, Zytnicki D (1984) Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurones in rats and cats. Neurosci Lett 45:15–19PubMedGoogle Scholar
  140. Hendrickson AE (1969) Electron microscopic radioautography: identification of origin of synaptic terminals in normal nervous tissue. Science 165:194–196PubMedGoogle Scholar
  141. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214PubMedGoogle Scholar
  142. Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25PubMedGoogle Scholar
  143. Honey CJ, Sporns O, Cammoun L, Gigondet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 106:2035–2040PubMedPubMedCentralGoogle Scholar
  144. Honig MC, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187PubMedGoogle Scholar
  145. Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463PubMedPubMedCentralGoogle Scholar
  146. Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11PubMedGoogle Scholar
  147. Houlden DA, Schwartz ML, Tator CH, Ashby P, MacKay WA (1999) Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci 19:1855–1862PubMedPubMedCentralGoogle Scholar
  148. Hsu SM, Raine L, Fanger H (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  149. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206PubMedGoogle Scholar
  150. Ilmoniemi RJ, Kicic D (2010) Methodology for combined TMS and EEG. Brain Topogr 22:233–248PubMedGoogle Scholar
  151. Itakura T (ed) (2015) Deep brain stimulation for neurological disorders. Springer, Cham/Heidelberg/Dordrecht/London/New YorkGoogle Scholar
  152. Johansen-Berg H, Behrens TEJ (eds) (2009) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Elsevier, AmsterdamGoogle Scholar
  153. Johansen-Berg H, Behrens TE, Robson MD, Drobnjak I, Rushworth MF, Brady JM et al (2004) Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci U S A 101:13335–13340PubMedPubMedCentralGoogle Scholar
  154. Julkunen P, Paakkonen A, Hukkanen T, Kononen M, Tilhonen P, Vanhatalo S et al (2008) Efficient reduction of stimulus artefact in TMS-EEG by epithelial short-circuiting by mini-punctures. Clin Neurophysiol 119:475–481PubMedGoogle Scholar
  155. Kamada K, Sawamura Y, Takeuchi F, Kawaguchi H, Kuriki S, Todo T et al (2005) Functional identification of the primary motor area by corticospinal tractography. Neurosurgery 56(Suppl 1):98–109PubMedGoogle Scholar
  156. Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J (2002) Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 450:122–134PubMedGoogle Scholar
  157. Kashturi N, Lichtman JW (2010) Neurocartography. Neuropsychopharmacology 35:342–343Google Scholar
  158. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci 103:63–71Google Scholar
  159. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444PubMedPubMedCentralGoogle Scholar
  160. Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459PubMedGoogle Scholar
  161. Kimiskidis VK, Tsimpiris A, Ryvlin P, Kalviainen R, Koutroumanidis M, Valentin A et al (2017) TMS combined with EEG in genetic generalized epilepsy: a phase II diagnostic accuracy study. Clin Neurophysiol 128:367–381PubMedGoogle Scholar
  162. Kitai ST, Bishop BA (1981) Intracellular staining of neurons. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 263–277Google Scholar
  163. Klingler J (1935) Erleichterung der makroskopischen Präparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256Google Scholar
  164. Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369PubMedGoogle Scholar
  165. Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403PubMedGoogle Scholar
  166. Kobayashi K, Katayama Y (2015) Intraoperative microelectrode recording. In: Itakura T (ed) Deep brain stimulation for neurological disorders. Springer, Cham/Heidelberg/Dordrecht/London/New York, pp 39–48Google Scholar
  167. Kötter R, Stephan KE, Palomero-Gallagher N, Geyer S, Schleicher A, Zilles K (2001) Multimodal characterization of cortical areas by multivariate analyses of receptor binding and connectivity data. Anat Embryol (Berl) 204:333–350Google Scholar
  168. Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363–365PubMedGoogle Scholar
  169. Kubicki M, Shenton ME (2014) Diffusion tensor imaging findings and their implications in schizophrenia. Curr Opin Psychiatry 27:179–184PubMedGoogle Scholar
  170. Kupfer C (1965) The distribution of cell size in the lateral geniculate nucleus of man following transneuronal cell atrophy. J Neuropathol Exp Neurol 24:653–661PubMedGoogle Scholar
  171. Kuypers HGJM, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13:71–75PubMedGoogle Scholar
  172. Kuypers HGJM, Bentivoglio M, Catsman-Berrevoets CE, Bharos TB (1980) Double retrograde neuronal labeling through diverging axon collaterals using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392PubMedGoogle Scholar
  173. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskopff RM, Poncelet BP et al (1991) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 89:5675–5679Google Scholar
  174. Lasek RJ, Katz MJ (1987) Mechanisms at the axon tip regulate metabolic processes critical to axonal elongation. Prog Brain Res 71:49–60PubMedGoogle Scholar
  175. Lasek RJ, Joseph BS, Whitlock DG (1968) Evaluation of a radioautographic neuroanatomical tracing method. Brain Res 8:319–336PubMedGoogle Scholar
  176. LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1415–1417Google Scholar
  177. Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR et al (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissections. NeuroImage 39:62–79PubMedGoogle Scholar
  178. Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386PubMedGoogle Scholar
  179. Le Bihan D, Breton E (1985) Imagerie de diffusion in vivo par résonance magnétique nucléaire. C R Acad Sci Paris 301:1109–1112Google Scholar
  180. Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546PubMedGoogle Scholar
  181. Le Gros Clark WE, Penman GG (1934) The projection of the retina in the lateral geniculate body. Proc Roy Soc B 114:292–313Google Scholar
  182. Lefaucheur JP, André-Obadia N, Antal A, Ayache SS, Baeken C, Benninger DH et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206PubMedGoogle Scholar
  183. León-Carrión J, León-Domínguez U (2012) Functional near-infrared spectroscopy (fNIRS): principles and neuroscientific applications. In: Neuroimaging – methods. In-Tech. www.intechopen.com.  https://doi.org/10.5772/23146
  184. Lévesque M, Parent A (2005) The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci U S A 102:11888–11893PubMedPubMedCentralGoogle Scholar
  185. Lichtman JW, Sanes JR (2008) Ome sweet ome: what can the genome tell us about the connectome? Curr Opin Neurobiol 18:346–353PubMedPubMedCentralGoogle Scholar
  186. Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124PubMedGoogle Scholar
  187. Lioumis P, Kicic D, Savolainen P, Mäkela JP, Kahkonen S (2009) Reproducibility of TMS-evoked EEG responses. Hum Brain Mapp 30:1387–1396PubMedGoogle Scholar
  188. Lowe J, Cox G (1990) Neuropathological techniques. In: Bancroft JD, Stevens A, Turner DR (eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 343–378Google Scholar
  189. Loyez M (1920) Coloration des fibres nerveuses par le méthode à l’hématoxyline au fèr après inclusion à la celloidine. C R Séanc Soc Biol Fil 62:511Google Scholar
  190. Lubínska L (1964) Axoplasmic streaming in regenerating and in normal nerve fibres. Prog Brain Res 13:1–66PubMedGoogle Scholar
  191. Ludwig E, Klingler J (1956) Atlas cerebri humani. Karger, BaselGoogle Scholar
  192. Luksch H, Walkowiak W, Muňoz A, ten Donkelaar HJ (1996) The use of in vitro preparations of the isolated amphibian CNS in neuroanatomy and neurophysiology. J Neurosci Methods 70:91–108PubMedGoogle Scholar
  193. Luo L, O’Leary DDM (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156PubMedGoogle Scholar
  194. Magritis MR, Rösler KM, Truffert A, Myers JP (1998) Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain 121:437–450Google Scholar
  195. Magritis MR, Rösler KM, Truffert A, Landis T, Hess CW (1999) A clinical study of motor evoked potentials using a triple stimulation technique. Brain 122:265–279Google Scholar
  196. Mahlknecht P, Akram H, Georgiev D, Tripoliti E, Candelario J, Zachaia A et al (2017) Pyramidal tract activation due to subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord 32:1174–1182PubMedGoogle Scholar
  197. Maier-Hein KH, Houde JC, Côté MP, Garyfallidis E, Zhong J et al (2017) The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 8:1349PubMedPubMedCentralGoogle Scholar
  198. Mandeville JB, Rosen BR (2002) Functional MRI. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 315–349Google Scholar
  199. Marani E, Schoen JHR (2005) A reappraisal of the ascending systems in man, with emphasis on the medial lemniscus. Adv Anat Embryol Cell Biol 179:1–76PubMedGoogle Scholar
  200. Marchi V, Algeri G (1885) Sulle degenerazioni discendenti consecutive a lesioni sperimentale in diverse zone della corteccia cerebrale. Riv Sper Freniatria Med Leg 11:492–494Google Scholar
  201. Marinesco G (1898) Veränderungen der Nervencentren nach Ausreissung der Nerven mit einigen Erwägungen betreffs ihrer Natur. Neurol Zbl 17:882–890Google Scholar
  202. Martin JL, Barbanoj MJ, Schlaepfer TE, Clos S, Perez V, Kulisevsky J et al (2002) Transcranial magnetic stimulation for treating depression. Cochrane Database Syst Rev 2002(2):CD003493Google Scholar
  203. Masuda N (1914) Ueber das Brückengrau des Menschen (Griseum pontis) und dessen näheren Beziehungen zum Kleinhirn und Großhirn. Arb Hirnanat Inst Zürich 9:1–249Google Scholar
  204. Matthews MR, Cowan WM, Powell TPS (1960) Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. J Anat (Lond) 94:145–169Google Scholar
  205. Mazzarello P, Della Sala S (1993) The demonstration of the visual area by means of the atrophic method in the work of Bartolomeo Panizza (1855). J Hist Neurosci 2:315–322PubMedGoogle Scholar
  206. Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227PubMedGoogle Scholar
  207. Mesulam M-M (1979) Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch Neurol 36:814–818PubMedGoogle Scholar
  208. Miklossy J, Van der Loos H (1991) The long-distance effects of brain lesions: visualization of myelination pathways in the human brain using polarizing and fluorescence microscopy. J Neuropathol Exp Neurol 50:1–15PubMedGoogle Scholar
  209. Miklossy J, Clarke S, Van der Loos H (1991) The long-distance effects of brain lesions: visualization of axonal pathways and their terminations in the human brain by the Nauta method. J Neuropathol Exp Neurol 50:595–614PubMedGoogle Scholar
  210. Mills KR (1991) Magnetic brain stimulation: a tool to explore the action of the motor cortex on single human spinal motoneurones. Trends Neurosci 14:401–405PubMedGoogle Scholar
  211. Morel A (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa, New York/LondonGoogle Scholar
  212. Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630PubMedPubMedCentralGoogle Scholar
  213. Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the brain basal ganglia: Anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443:86–103PubMedPubMedCentralGoogle Scholar
  214. Mori S (2002) Principles, methods, and applications of diffusion tensor imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 379–397Google Scholar
  215. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedGoogle Scholar
  216. Mori S, Wakana S, Nagae-Poetscher LM, van Zijl PC (2005) MRI atlas of human white matter. Elsevier, AmsterdamGoogle Scholar
  217. Moseley ME, Kucharczyk J, Asgari HS, Norman D (1991) Anisotropy in diffusion-weighted MRI. Magn Res Med 19: 321–326Google Scholar
  218. Mufson EJ, Brady DR, Kordower JH (1990) Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol Aging 11:649–653PubMedGoogle Scholar
  219. Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y et al (1998) Somatosensory homunculus as drawn by MEG. NeuroImage 7:377–386PubMedGoogle Scholar
  220. Nambu A, Chiken S (2015) Mechanism of DBS: inhibition, excitation or disruption? In: Itakura T (ed) Deep brain stimulation for neurological disorders. Springer, Cham/Heidelberg/Dordrecht/London/New York, pp 13–20Google Scholar
  221. Nance DM, Burns J (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull 25:139–145PubMedGoogle Scholar
  222. Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral. Front Neuroanat 9:80PubMedPubMedCentralGoogle Scholar
  223. Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105:223–269PubMedGoogle Scholar
  224. Nathan PW, Smith MC, Deacon P (1990) The corticospinal tract in man. Course and location of fibres at different segmental tracts. Brain 113:303–324PubMedGoogle Scholar
  225. Nathan PW, Smith MC, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119:1809–1833PubMedGoogle Scholar
  226. Nauta WJH (1950) Ueber die sogenannte terminale Degeneration im Zentralnervensystem und ihre Darstellung durch Silberimprägnation. Schweiz Arch Neurol Psychiatr 66:353–376PubMedGoogle Scholar
  227. Nauta WJH, Gygax PA (1951) Silver impregnation of degenerating axon terminals in the central nervous system. 1. Technic. 2. Chemical notes. Stain Technol 26:5–11PubMedGoogle Scholar
  228. Nauta WJH, Gygax PA (1954) Silver impregnation of degenerating axons in the central nervous system: A modified technique. Stain Technol 29:91–93PubMedGoogle Scholar
  229. Nissl F (1885) Ueber die Untersuchungsmethoden der Grosshirnrinde. Neurol Zbl 4:500–501Google Scholar
  230. Nissl F (1892) Ueber die Veränderungen der Ganglienzellen am Facialiskern des Kaninchens nach Ausreissung der Nerven. Allg Z Psychiatr 48:197–198Google Scholar
  231. Nissl F (1894) Ueber die sogenannten Granula der Nervenzellen. Neurol Zbl 13:676–688Google Scholar
  232. O’Connell NE, Marston L, Spencer S, LH DS, Wand BM (2018) Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 2018(4):CD008208PubMedCentralGoogle Scholar
  233. Ochs S, Burger E (1958) Movement of substance proximo-distally in nerve axons as studied with spinal cord injections of radioactive phosphorus. Am J Phys 194:499–506Google Scholar
  234. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872PubMedPubMedCentralGoogle Scholar
  235. Ogawa S, Tank D, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955PubMedPubMedCentralGoogle Scholar
  236. Oishi K, Zilles K, Amunts K, Faria A, Jiang H et al (2008) Human brain white matter atlas: identification and assigment of common anatomical structures in superficial white matter. NeuroImage 43:447–457PubMedPubMedCentralGoogle Scholar
  237. Op de Coul AAW (1970) De Atrofie van de Kleine Handspieren. Thesis, University of Amsterdam (in Dutch)Google Scholar
  238. Pal J (1887) Ein Beitrag zur Nervenfärbetechnik. Z Wiss Mikrosk 4:92–96Google Scholar
  239. Palm C, Axer M, Gräβel D, Dammers J, Lindemeyer J, Zilles K et al (2010) Towards ultra-high resolution fibre tract mapping of the human brain – registration of polarized light images and reorientation of fibre vectors. Front Hum Neurosci 4:9PubMedPubMedCentralGoogle Scholar
  240. Palomero-Gallagher N, Zilles K (2019) Cortical layers: cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. NeuroImage 197:716–741PubMedGoogle Scholar
  241. Panesar SS, Fernandez-Miranda J (2019) Commentary: the nomenclature of human white matter association pathways: proposal for a systematic taxonomic anatomical classification. Front Neuroanat 13:61PubMedPubMedCentralGoogle Scholar
  242. Panesar SS, Yeh F-C, Deibert CP, Fernandes-Cabral D, Rowthu V, Caltikei P et al (2017) A diffusion spectrum imaging-based tractography study into the anatomical subdivision and cortical connectivity of the ventral external capsule: Uncinate and inferior fronto-occipital fascicles. Neuroradiology 59:971–987PubMedGoogle Scholar
  243. Parent M, Parent A (2005) Single-axon tracing and three-dimensional reconstruction of centre médian-parafascicular thalamic neurons in primates. J Comp Neurol 481:127–144PubMedGoogle Scholar
  244. Parent M, Parent A (2006) Single-axon tracing of the corticostriatal projections arising from primary motor cortex in primates. J Comp Neurol 496:202–216PubMedGoogle Scholar
  245. Parent M, Parent A (2016) The primate basal ganglia connectome as revealed by single-axon tracing. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 27–46Google Scholar
  246. Parent A, Charara A, Pinault D (1995) Single striatofugal axons arborizing in both pallidal segments and in the substantia nigra in primates. Brain Res 698:280–284PubMedGoogle Scholar
  247. Parent M, Lévesque M, Parent A (2001) Two types of projection neurons in the internal pallidum of primates: single-axon tracing and three-dimensional reconstruction. J Comp Neurol 439:162–175PubMedGoogle Scholar
  248. Pascual-Leone A, Walsh V (2002) Transcranial magnetic stimulation. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, pp 255–290Google Scholar
  249. Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of virtual lesions. Phil Trans R Soc Lond B 354:1229–1238Google Scholar
  250. Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22:210–216PubMedPubMedCentralGoogle Scholar
  251. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedGoogle Scholar
  252. Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord. Its role in motor control and movement disorders. Cambridge University Press, CambridgeGoogle Scholar
  253. Pijnenburg R, Scheltens LH, Mautini D, Vanduffel MP (2019) Biological characteristics of connection-wise resting-state functional connectivity strength. Cereb Cortex 29:4646–4653Google Scholar
  254. Pizzella V, Romani G (1990) Principles of magnetoencephalography. In: Sato S (ed) Magnetoencephalography. Raven, New York, pp 1–9Google Scholar
  255. Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, Zilles K (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2232–2258PubMedGoogle Scholar
  256. Rademacher J, Bürgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. NeuroImage 17:142–160PubMedGoogle Scholar
  257. Raichle ME (2011) The restless brain. Brain Connect 1:3–12PubMedPubMedCentralGoogle Scholar
  258. Raichle ME (2015) The brain’s default network. Annu Rev Neurosci 38:433–447PubMedGoogle Scholar
  259. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default model of brain function. Proc Natl Acad Sci U S A 98:676–682PubMedPubMedCentralGoogle Scholar
  260. Raj A, Powell F (2018) Models of network spread and network degeneration in brain disorders. Biol Psychiatry Cogn Neuroimag 3:788–797Google Scholar
  261. Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system (translated and edited by RM May). Oxford University Press, London (extended reprint edited by J De Felipe and EG Jones 1991 Oxford University Press, New York)Google Scholar
  262. Ramón-Moliner E (1970) The Golgi-Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin/Heidelberg/New York, pp 32–55Google Scholar
  263. Reckfort J, Wiese H, Pietrzyk U, Zilles K, Amunts K (2015) A multiscale approach for the reconstruction of the fiber architecture of the human brain based on 3D-PLI. Front Neuroanat 9:118PubMedPubMedCentralGoogle Scholar
  264. Reich MM, Steigerwald F, Sawalhe AD, Reese R, Gunalan K, Johannes S et al (2015) Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol 2:427–432PubMedPubMedCentralGoogle Scholar
  265. Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC et al (2015) Superficial white matter systems impede detection of long-range cortical connections in diffusion MR tractography. Proc Natl Acad Sci U S A 112:E2820–E2828PubMedPubMedCentralGoogle Scholar
  266. Rheault F, St-Onge E, Tzourio-Mazoyer N, Sidhu J, Petit L, Descoteaux M (2019) Bundle-specific tractography: enhancing fiber tracking with additional anatomical and orientational priors. NeuroImage. NeuroImage 186:129–139Google Scholar
  267. Ringel F, Sala F (2015) Intraoperative mapping and monitoring in supratentorial tumor surgery. J Neurosurg Sci 59:129–139PubMedGoogle Scholar
  268. Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E et al (2018) Structural dysconnectivity of key cognitive and emotional hubs in young people at genetic risk for bipolar disorders. Mol Psychiatry 23:413–421PubMedGoogle Scholar
  269. Roebroeck A, Galuske R, Formisano E, Chiry O, Bratzke H, Ronen L et al (2008) High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4T. NeuroImage 39:157–168PubMedGoogle Scholar
  270. Rogasch NC, Sullivan C, Thompson RH, Rose NS, Bailey NW, Fitzgerald PB et al (2017) Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: a review and introduction to the open-source TESA software. NeuroImage 147:934–951PubMedGoogle Scholar
  271. Rothwell JC (1997) Techniques and mechanics of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122PubMedGoogle Scholar
  272. Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200PubMedGoogle Scholar
  273. Roy S, Zhang B, Lee VM-Y, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol (Berl) 109:5–13Google Scholar
  274. Ruda M, Coulter JD (1982) Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry. Brain Res 249:237–246PubMedGoogle Scholar
  275. Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16:593–599PubMedGoogle Scholar
  276. Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398PubMedGoogle Scholar
  277. Sato F, Lavallée P, Lévesque M, Parent A (2000a) Single-axon tracing of neurons in the external segment of the globus pallidus in primates. J Comp Neurol 417:17–31PubMedGoogle Scholar
  278. Sato F, Parent M, Lévesque M, Parent A (2000b) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152PubMedGoogle Scholar
  279. Sawchenko PE, Gerfen CR (1985) Plant lectins and bacterial toxins as tools for tracing neuronal connections. Trends Neurosci 8:3780384Google Scholar
  280. Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y et al (2019) Limits to anatomical accuracy of diffusion tractography using modern approaches. NeuroImage 185:1–11PubMedGoogle Scholar
  281. Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New YorkGoogle Scholar
  282. Schmahmann JD, Nitsch RM, Pandya DN (1992) The mysterious relocation of the bundle of Türck. Brain 115:1911–1924PubMedGoogle Scholar
  283. Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways in the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653PubMedGoogle Scholar
  284. Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, fluoro-ruby, within the CNS. Brain Res 526:127–134PubMedGoogle Scholar
  285. Schoen JHR (1969) The corticofugal projection on the brain stem and spinal cord in man. Psychiatr Neurol Neurochir 72:121–128PubMedGoogle Scholar
  286. Schwab ME, Thoenen H (1976) Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res 105:213–227PubMedGoogle Scholar
  287. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52PubMedPubMedCentralGoogle Scholar
  288. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New HavenGoogle Scholar
  289. Smith MC (1951) The use of Marchi staining in the later stages of human tract degeneration. J Neurol Neurosurg Psychiatry 14:222–225PubMedPubMedCentralGoogle Scholar
  290. Smith MC (1956a) Observations on the extended use of the Marchi method. J Neurol Neurosurg Psychiatry 19:69–73Google Scholar
  291. Smith MC (1956b) The recognition and prevention of artefacts of the Marchi method. J Neurol Neurosurg Psychiatry 19:74–83PubMedPubMedCentralGoogle Scholar
  292. Smith MC, Strich SJ, Sharp P (1956) The value of the Marchi method for staining tissue stored in formalin for prolonged periods. J Neurol Neurosurg Psychiatry 19:62–64PubMedPubMedCentralGoogle Scholar
  293. Smith SM, Vidaurre D, Backmann CF, Glasser NF, Jenkinson M, Miller KL et al (2013) Functional connectonics from resting-state fMRI. Trends Cogn Sci 17:666–682PubMedPubMedCentralGoogle Scholar
  294. Spehlmann R (1985) Evoked potential primer. Butterworth, BostonGoogle Scholar
  295. Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125Google Scholar
  296. Sporns O (2012) Discovering the human connectome. MIT Press, Cambridge, MAGoogle Scholar
  297. Sporns O, Betzel RF (2016) Modular brain networks. Annu Rev Psychol 67:613–640PubMedGoogle Scholar
  298. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comp Biol 1:e42Google Scholar
  299. Srinivasan R, Winter WR, Pl N (2006) Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res 159:29–42PubMedPubMedCentralGoogle Scholar
  300. Stegeman DF, Dumitru D, King KC, Roeleveld K (1997) Near- and far-fields: source characteristics and the conducting medium in neurophysiology. J Clin Neurophysiol 14:429–442PubMedGoogle Scholar
  301. Steigerwald F, Matthies C, Volkmann J (2019) Directional deep brain stimulation. Neurotherapeutics 16:100–104PubMedGoogle Scholar
  302. Steinbusch HWM (1987) Monoaminergic neurons: light microscopy and ultrastructure, IBRO Handbook Series: Methods in the Neurosciences, vol 10. Wiley, ChichesterGoogle Scholar
  303. Stephan KE, Hilgetag C-C, Burns GAPC, O’Neill MA, Young MP, Kötter R (2000) Computational analysis of functional connectivity between areas of primate cerebral cortex. Phil Trans R Soc Lond B 355:111–126Google Scholar
  304. Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  305. Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759PubMedGoogle Scholar
  306. Strack AM, Loewy AD (1990) Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J Neurosci 10:2139–2147PubMedPubMedCentralGoogle Scholar
  307. Su JH, Deng G, Cotman CW (1997) Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation. Neurobiol Dis 4:365–375PubMedGoogle Scholar
  308. Swanson LW, Bota M (2010) Foundational model of structural connectivity in the nervous system with a schema for wiring diagrams, connectome, and basic plan architecture. Proc Natl Acad Sci U S A 107:20610–20617PubMedPubMedCentralGoogle Scholar
  309. Swanson LW, Hahn JD, Sporns O (2017) Organizing principles for the cerebral cortex network of commissural and association connections. Proc Natl Acad Sci U S A:E9692–E9701Google Scholar
  310. Takemura H, Pestilli F, Weiner KS (2019) Comparative neuroanatomy: integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neurosci Res 146:1–12PubMedGoogle Scholar
  311. Tamraz JC, Comair YG (2000) Atlas of regional anatomy of the brain using MRI. With functional correlations. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  312. Thiebaut de Schotten M, Dell A’Acqua F, Valabreque R, Catani M (2012) Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:82–96PubMedGoogle Scholar
  313. Thiebaut de Schotten M, Tomaiuolo F, Aiello M, Merola S, Silvetti M, Lecca F et al (2014) Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cereb Cortex 24:691–706PubMedGoogle Scholar
  314. Thiebaut de Schotten M, Dell’Acqua F, Ratiu P, Leslie A, Howells H, Cabanis E et al (2015) From phineas gage and monsieur leborgne to H.M.: revisiting disconnection syndromes. Cereb Cortex 25:4812–4827PubMedPubMedCentralGoogle Scholar
  315. Thiebaut de Schotten M, Urbanski M, Batrancourt B, Levy R, Dubois B, Cerliani L, Volle E (2017) Rostro-caudal architecture of the frontal lobes in humans. Cereb Cortex 27:4033–4047PubMedGoogle Scholar
  316. Thiebaut de Scotten M, Ffytche DH, Bizzi A, Dell’Acqua F, Allin M, Walshe M et al (2011) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. NeuroImage 54:49–59Google Scholar
  317. Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, Pierpaoli C (2014) Anatomical acuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A 111:46Google Scholar
  318. Thompson PD, Day BL, Crockard HA, Calder I, Murray NMF, Rothwell JC (1991) Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation by the motor cortex. J Neurol Neurosurg Psychiatry 54:618–623PubMedPubMedCentralGoogle Scholar
  319. Thut G, Ives JR, Kampmann F, Pastor MA, Pascual-Leone A (2005) A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J Neurosci Meth 141:207–217Google Scholar
  320. Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23:1176–1185PubMedGoogle Scholar
  321. Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35:1459–1472PubMedGoogle Scholar
  322. Trojanowski JQ, Gonatas JO, Gonatas NK (1982) Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrogradely transported markers than free HRP. Brain Res 231:33–50PubMedGoogle Scholar
  323. Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183PubMedGoogle Scholar
  324. Türck L (1849) Mikroskopischer Befund des Rückenmarkes eines paraplegischen Weibes. Z Kais Kön Ges Ärzte Wien 5:173–176Google Scholar
  325. Türe U, Yaşargil MG, Pait TG (1997) Is there a superior occipitofrontal fasciculus? A microsurgical anatomic study. Neurosurgery 40:1226–1232PubMedGoogle Scholar
  326. Türe U, Yaşargil DC, Al-Mefty O, Yaşargil MG (1999) Topographic anatomy of the insular region. J Neurosurg 90:720–733PubMedGoogle Scholar
  327. Türe U, Yaşargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–427PubMedGoogle Scholar
  328. Ugolini G, Kuypers HGJM, Simmons A (1987) Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV1) from motoneurons. Brain Res 422:242–256PubMedGoogle Scholar
  329. Usunoff KG, Marani E, Schoen JHR (1997) The trigeminal system in man. Adv Anat Embryol Cell Biol 136:1–126Google Scholar
  330. Valverde F (1970) The Golgi method. A tool for comparative structural analyses. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin/Heidelberg/New York, pp 12–31Google Scholar
  331. Van Buren JM (1963a) The retinal ganglion cell layer. Thomas, SpringfieldGoogle Scholar
  332. Van Buren JM (1963b) Transsynaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 26:402–409PubMedCentralGoogle Scholar
  333. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534PubMedGoogle Scholar
  334. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786PubMedPubMedCentralGoogle Scholar
  335. van den Heuvel MP, Sporns O (2013) Network hubs in the human brain. Trends Cog Sci 17:683–696Google Scholar
  336. van den Heuvel MP, Sporns O (2019) A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci 20:435–446PubMedGoogle Scholar
  337. van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141PubMedPubMedCentralGoogle Scholar
  338. van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W et al (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiat 70:783–792Google Scholar
  339. van den Heuvel MP, de Reus MA, Feldman Barrett L, Scholtens LH, Coopmans FM, Schmidt R et al (2015) Comparison of diffusion tractography and tract-tracing measures of connectivity strength in rhesus macaque connectome. Hum Brain Mapp 36:3064–3075PubMedPubMedCentralGoogle Scholar
  340. van den Heuvel MP, Bullmore ET, Sporns O (2016) Comparative connectomics. Trends Cogn Sci 20:345–361PubMedGoogle Scholar
  341. van Domburg PHMF, ten Donkelaar HJ (1991) The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging diseases. Adv Anat Embryol Cell Biol 121:1–132PubMedGoogle Scholar
  342. Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012) Parcellation and hemispheric asymmetries of human cerebral cortex analysed on surface-based atlases. Cereb Cortex 22:2241–2262PubMedGoogle Scholar
  343. Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179PubMedGoogle Scholar
  344. Veenman CL, Reiner A, Honig MC (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:239–244PubMedGoogle Scholar
  345. Veniero D, Bortoletto M, Miniussi C (2009) TMS-EEG co-registration: on TMS-induced artifact. Clin Neurophysiol 120:1392–1399PubMedGoogle Scholar
  346. von Gudden B (1870) Experimentaluntersuchungen über das peripherische und centrale Nervensystem. Arch Psychiatr 2:693–724Google Scholar
  347. Voogd J, Feirabend HKP, Schoen JHR (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 321–386Google Scholar
  348. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 23:77–87Google Scholar
  349. Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Phil Trans 140:423–469Google Scholar
  350. Walsh FB (1947) Clinical neuro-ophthalmology. Williams & Wilkins, BaltimoreGoogle Scholar
  351. Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenetic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260PubMedPubMedCentralGoogle Scholar
  352. Wandell BA (2016) Clarifying human white matter. Annu Rev Neurosci 39:103–128PubMedGoogle Scholar
  353. Wandell BA, Yeatman JD (2013) Biological development of reading circuits. Curr Opin Neurobiol 23:261–268PubMedPubMedCentralGoogle Scholar
  354. Wang X, Pathak S, Stefaneanu L, Yeh F-C, Li S, Fernandez-Miranda JC (2016) Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Brain Struct Funct 22:2075–2092Google Scholar
  355. Wassermann EM, Lisbanby SH (2001) Therapeutic application of repetitive transcranial stimulation: a review. Clin Neurophysiol 112:1367–1377PubMedGoogle Scholar
  356. Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Non-invasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85:1–8PubMedGoogle Scholar
  357. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386PubMedGoogle Scholar
  358. Weigert C (1884) Ausführliche Beschreibung der in No. 2 dieser Zeitschrift erwähnten neuen Färbungsmethode für das Centralnervensystem. Fortschr Med 2:190–191Google Scholar
  359. Weil AA (1928) A rapid method for staining myelin sheaths. Arch Neurol Psychiatr 20:392–393Google Scholar
  360. Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–395PubMedGoogle Scholar
  361. Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motor cortical inhibition induced by blockade of GABA uptake in humans. J Physiol Lond 517:591–597PubMedPubMedCentralGoogle Scholar
  362. Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65:733–739PubMedGoogle Scholar
  363. Woelcke M (1942) Eine neue Methode der Markscheidenfärbung. J Physiol Neurol 51:199–202Google Scholar
  364. Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51:476–506PubMedGoogle Scholar
  365. Wouterlood FG, Bloem B, Mansvelder HD, Luchicchi A, Deisseroth K (2014) A fourth generation of neuroanatomical tracing techniques: exploiting the offspring of genetic engineering. J Neurosci Meth 235:331–348Google Scholar
  366. Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA (2012) Development of white matter and reading skills. Proc Natl Acad Sci U S A 109:E3045–E3053PubMedPubMedCentralGoogle Scholar
  367. Yeh F-C, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC et al (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178:57–68PubMedPubMedCentralGoogle Scholar
  368. Zeineh MM, Palomero-Gallagher N, Axer M, Gräβel D, Goubron M, Wree A et al (2017) Direct visualization and mapping of the spatial course of fiber tracts at microscopic resolution in the human hippocampus. Cereb Cortex 27:1779–1794PubMedGoogle Scholar
  369. Zhou J, Seeley WW (2014) Network dysfunction in Alzheimer’s disease and frontotemporal dementia: implications for psychiatry. Biol Psychiatry 75:565–573PubMedGoogle Scholar
  370. Zhou J, Greicius MD, Gennatas ED, Growden ME, Jang JY, Rabinovici GD et al (2010) Divergent network connectivity changes in behavioural versus frontotemporal dementia and Alzheimer’s disease. Brain 133:1353–1367Google Scholar
  371. Ziemann U (2003) Pharmacology of TMS. Suppl Clin Neurophysiol 56:226–231PubMedGoogle Scholar
  372. Zilles K (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat (Lond) 187:515–537Google Scholar
  373. Zilles K, Palomero-Gallagher N (2017) Multiple transmitter receptors in regions and layers of the human cerebral cortex. Front Neuroanat 11:78PubMedPubMedCentralGoogle Scholar
  374. Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic Press, San Diego, pp 573–602Google Scholar
  375. Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat (Lond) 205:417–432Google Scholar
  376. Zilles K, Bacha-Tranes M, Palomero-Gallagher N, Amunts K, Friederici AD (2015) Common molecular basis of the sentence comprehensive network revealed by neurotransmitter receptor fingerprints. Cortex 63:79–89PubMedPubMedCentralGoogle Scholar
  377. Zilles K, Palomero-Gallagher N, Gräβel D, Schlömer P, Cremer M, Woods R et al (2016) High-resolution fiber and fiber tract imaging using polarized light microscopy in the human, monkey, rat, and mouse brain. In: Rockland KS (ed) Axons and brain architecture. Academic/Elsevier, San Diego, pp 369–389Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hans J. ten Donkelaar
    • 1
    Email author
  • Jonne Doorduin
    • 2
  • Marco Catani
    • 3
  • Martijn P. van den Heuvel
    • 4
  1. 1.935 Department of NeurologyRadboud University Medical Centre and Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
  2. 2.920 Department of NeurologyRadboud University Medical CentreNijmegenThe Netherlands
  3. 3.Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
  4. 4.Department of Complex Trait GeneticsVU Centre for Neurogenomics and Cognitive ResearchAmsterdamThe Netherlands

Personalised recommendations