The Limbic System



The term “limbic” was first used in 1664 by Thomas Willis to describe the cortical structures on the medial side of the cerebral hemisphere, surrounding the brain stem. Two centuries later, Paul Broca noticed that the cingulate gyrus and the parahippocampal gyrus form a border (limbus) around the corpus callosum and the brain stem. Broca subdivided his grand lobe limbique into inner (the hippocampus) and outer (the cingulate and parahippocampal gyri) rings. During the last decades of the nineteenth century and the first decades of the twentieth century, it was generally believed that most if not all structures of Broca’s limbic lobe were dominated by olfactory input and therefore form part of the rhinencephalon. In 1937, James Papez proposed that these structures are involved in a closed circuit. The circuit of Papez includes projections from the hippocampus via the fornix to the mamillary body and then via the mamillothalamic tract of Vicq d’Azyr to the anterior thalamic nucleus, from here to the cingulate gyrus, and as last step from the cingulate gyrus back to the hippocampus. Papez suggested that his circuit formed the anatomical basis for emotions. In 1952, Paul MacLean included the circuit of Papez with the amygdala and the hypothalamus into his limbic system, supposed to be responsible for emotional behaviour (the “visceral” or “emotional” brain). Lennart Heimer promoted an expanded version of the classic limbic lobe of Broca, which contains all non-isocortical parts of the cerebral hemisphere together with the laterobasal-cortical amygdaloid complex, with several output channels in the basal forebrain. Thus defined, the limbic lobe contains all of the major cortical and amygdaloid structures known to be especially important for emotional and behavioural functions. Experimental studies in the early 1970s identified the output channels of the limbic lobe in the basal forebrain as the ventral striatopallidal system, the extended amygdala and the basal nucleus of Meynert.

Both the amygdala and the hippocampal formation are involved in memory processing and memory disorders. Almost all severe amnesias occur after bilateral involvement of limbic structures. Association and limbic structures suffer the blunt of damage in dementia. In this chapter, following a brief discussion of the concept of the limbic system (► Sect. 14.2); the olfactory system (► Sect. 14.3); the basal forebrain (► Sect. 14.4); the amygdala (► Sect. 14.5); neuropsychiatric disorders such as schizophrenia (► Sect. 14.6) in which the amygdala, among other structures, is involved; the hippocampus (► Sect. 14.7); and memory and memory disorders (► Sect. 14.8) will be discussed. ► Section 14.9 includes a survey of the neuroanatomical basis of memory impairment in Alzheimer’s disease. The English terms of the Terminologia Neuroanatomica are used throughout.


  1. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:341–355PubMedPubMedCentralGoogle Scholar
  2. Abrahams VC, Hilton SM, Malcolm JL (1962) Sensory connections to the hypothalamus and midbrain, and their role in the reflex activation of the defence reaction. J Physiol Lond 164:1–16PubMedPubMedCentralGoogle Scholar
  3. Adolphs R (2008) Fear, faces, and the human amygdala. Curr Opin Neurobiol 18:166–172PubMedPubMedCentralGoogle Scholar
  4. Adolphs R, Tranel D (2000) Emotion, recognition, and the human amygdala. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 587–630Google Scholar
  5. Adolphs R, Tranel D, Damasio H, Damasio AR (1995) Fear and the human amygdala. J Neurosci 15:5879–5891PubMedPubMedCentralGoogle Scholar
  6. Adolphs R, Tranel D, Hamann S, Young AW, Calder AJ, Phelps EA et al (1999) Recognition of facial emotion in nine subjects with bilateral amygdala damage. Neuropsychologia 37:1111–1117PubMedGoogle Scholar
  7. Aggleton JP (1992) The functional effects of amygdala lesions in humans: a comparison with findings from monkeys. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental functions. Wiley-Liss, New York, pp 485–504Google Scholar
  8. Aggleton JP (1993) The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci 16:328–333PubMedGoogle Scholar
  9. Aggleton JP, Mishkin M (1983a) Visual recognition impairment following medial thalamic lesions in monkeys. Neuropsychologia 21:189–197PubMedGoogle Scholar
  10. Aggleton JP, Mishkin M (1983b) Memory impairment following restricted medial thalamic lesions in monkeys. Exp Brain Res 52:199–209PubMedGoogle Scholar
  11. Aggleton JP, Mishkin M (1984) Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 222:56–68PubMedGoogle Scholar
  12. Aggleton JP, Mishkin M (1985) Mammillary-body lesions and visual recognition in the monkey. Exp Brain Res 58:190–197PubMedGoogle Scholar
  13. Aggleton JP, Saunders RC (2000) The amygdala – what’s happened in the last decade? In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 1–30Google Scholar
  14. Aggleton JP, Burton MJ, Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–368PubMedGoogle Scholar
  15. Aggleton JP, Pralus A, Nelson AJD, Hornberger M (2016) Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit. Brain 139:1877–1890PubMedPubMedCentralGoogle Scholar
  16. Aletrino MA, Vogels OJM, van Domburg PHMF, ten Donkelaar HJ (1992) Cell loss in the nucleus raphes dorsalis in Alzheimer’s disease. Neurobiol Aging 13:461–468PubMedGoogle Scholar
  17. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39PubMedGoogle Scholar
  18. Alheid GF, Heimer L, Switzer RC (1990) Basal ganglia. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 483–582Google Scholar
  19. Alheid GF, de Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 495–578Google Scholar
  20. Allison AC (1954) The secondary olfactory areas in the human brain. J Anat (Lond) 88:481–488Google Scholar
  21. Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiatr Psych-Gerichtl Med 64:146–148Google Scholar
  22. Amaral DG (1978) A Golgi study of the cell types of the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–915PubMedGoogle Scholar
  23. Amaral DG (1986) Amygdalohippocampal and amygdalocortical projections in the primate brain. In: Ben-Ari Y, Schwarcz R (eds) Excitatory amino acids and epilepsy. Plenum, New York, pp 3–17Google Scholar
  24. Amaral DG (1987) Memory: anatomical organization of candidate brain regions. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Vol V: Higher functions of the nervous system. American Physiological Society, Bethesda, pp 211–294Google Scholar
  25. Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591PubMedGoogle Scholar
  26. Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 711–755Google Scholar
  27. Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230:465–496PubMedGoogle Scholar
  28. Amaral DG, Witter M (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591PubMedGoogle Scholar
  29. Amaral DG, Insausti R, Cowan WM (1984) The commissural connections of the monkey hippocampal formation. J Comp Neurol 224:307–336PubMedGoogle Scholar
  30. Amaral DG, Insausti R, Cowan WM (1987) The entorhinal cortex in the monkey. I Cytoarchitectonic organization. J Comp Neurol 264:326–355PubMedGoogle Scholar
  31. Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1–66Google Scholar
  32. Amaral DG, Behniea H, Kelly JL (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118:1099–1120PubMedGoogle Scholar
  33. Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22PubMedPubMedCentralGoogle Scholar
  34. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145PubMedPubMedCentralGoogle Scholar
  35. Ameis SH, Catani M (2015) Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorders. Cortex 62:158–181PubMedGoogle Scholar
  36. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg P, Shah NJ et al (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat Embryol (Berl) 210:343–352Google Scholar
  37. Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of the hippocampal excitatory pathways. Exp Brain Res 13:222–238PubMedGoogle Scholar
  38. Andersen P, Soleng AF, Raastad M (2000) The hippocampal lamella hypothesis revisited. Brain Res 886:165–171PubMedGoogle Scholar
  39. Annese J, Schenker-Ahmed NM, Bartich H, Maechler P, Sheh C, Thomas N et al (2014) Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction. Nat Commun 5:3122PubMedPubMedCentralGoogle Scholar
  40. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108Google Scholar
  41. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116PubMedGoogle Scholar
  42. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992a) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639PubMedGoogle Scholar
  43. Arriagada PV, Marzloff K, Hyman BT (1992b) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688PubMedGoogle Scholar
  44. Ashwell KWS, Waite PME (2004) Development of the peripheral nervous system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 95–110Google Scholar
  45. Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol (Berl) 127:459–475Google Scholar
  46. Augustinack JC, Helmer K, Huber KE, Kakunoori S, Zöllei L, Fischl B (2010) Direct visualization of the perforant pathway in the human brain with ex vivo diffusion tensor imaging. Front Hum Neurosci 4:1–13Google Scholar
  47. Augustinack JC, Huber KE, Stevens AA, Roy M, Frosch MP, van der Kouwe AJW et al (2013) Predicting the location of human perirhinal cortex, Brodmann’s area 35, from MRI. NeuroImage 64:32–42PubMedGoogle Scholar
  48. Augustinack JC, Magnain C, Reuter M, van der Kouwe AJW, Boas D, Fischl B (2014a) MRI parcellation of ex vivo medial temporal lobe. NeuroImage 93:252–259PubMedGoogle Scholar
  49. Augustinack JC, van der Kouwe AJ, Salat DH, Benner T, Stevens AA, Annese J et al (2014b) H.M.’s contribution to neuroscience: a review and autopsy studies. Hippocampus 24:1267–1286PubMedPubMedCentralGoogle Scholar
  50. Babb TL, Lieb JP, Brown WJ, Pretorius J, Crandall PH (1984) Distribution of pyramidal cell density and hyperexcitability in the epileptic human hippocampal formation. Epilepsia 25:721–728PubMedGoogle Scholar
  51. Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF (1991) Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42:351–363PubMedGoogle Scholar
  52. Bachevalier J (2000) The amygdala, social behaviour, and autism. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 509–543Google Scholar
  53. Bailey A, Luthert P, Dean A, Harding B, Janota M, Montgomery M et al (1998) A clinicopathological study of autism. Brain 121:889–905PubMedGoogle Scholar
  54. Baleydier C, Mauguière F (1980) The duality of the cingulate gyrus in the monkey. Neuroanatomical study and functional hypothesis. Brain 103:525–554PubMedGoogle Scholar
  55. Barbas H, Blatt GJ (1995) Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511–533PubMedGoogle Scholar
  56. Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, O’Brien JT (1999) Medial temporal lobe atrophy on MRI in dementia with Lewy bodies. Neurology 52:1153–1158PubMedGoogle Scholar
  57. Barkhof F, Polvikoski TM, van Straaten ECW, Kalaria RN, Sulkava R, Aronen HJ et al (2007) The significance of medial temporal lobe atrophy. A postmortem MRI study in the very old. Neurology 69:1521–1527PubMedGoogle Scholar
  58. Bartus RI, Dean RL, Beer B, Lippa S (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414PubMedGoogle Scholar
  59. Bayer SA (1980) Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J Comp Neurol 194:845–875PubMedGoogle Scholar
  60. Bayer SA, Altman J (1987) Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog Neurobiol 29:57–106PubMedGoogle Scholar
  61. Beaujoin J, Palomero-Gallagher N, Boumezbeur F, Axer M, Bernard J, Poupon F et al (2018) Post-mortem inference of the human hippocampal connectivity and microstructure using ultra-high field diffusion MRI at 11.7 T. Brain Struct Funct 223:2157–2179PubMedPubMedCentralGoogle Scholar
  62. Becker T, Elmer K, Mechela B, Schneider F, Taubert S, Schroth G et al (1990) MRI findings in medial temporal lobe structures in schizophrenia. Eur Neuropsychopharmacol 1:83–86PubMedGoogle Scholar
  63. Benson DF, Marsden CD, Meadows JL (1974) The amnesic syndrome of posterior cerebral artery occlusion. Acta Neurol Scand 50:133–145PubMedGoogle Scholar
  64. Birnbaum R, Weinberger DR (2017) Genetic insights into the neurodevelopmental origin of schizophrenia. Nat Rev Neurosci 18:727–740PubMedGoogle Scholar
  65. Blackstad TW (1956) Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105:417–537PubMedGoogle Scholar
  66. Blatt GJ, Rosene DL (1998) Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392:92–114PubMedGoogle Scholar
  67. Blümcke I, Zuschratter W, Schewe J-C, Suter B, Lie AA, Riederer BM et al (1999) Cellular pathology of hilar neurons in Ammon’s horn sclerosis. J Comp Neurol 414:437–453PubMedGoogle Scholar
  68. Blümcke I, Thom M, Wiestler OD (2002) Ammon’s horn sclerosis: a maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol 12:199–211PubMedGoogle Scholar
  69. Blumer D, Wakhlu S, Davies K, Hermann B (1998) Psychiatric outcome of temporal lobectomy for epilepsy: incidence and treatment of psychiatric complications. Epilepsia 39:478–486PubMedGoogle Scholar
  70. Boets B, Van Eylen L, Sitek K, Moors P, Noens L, Steyaert J et al (2018) Alterations in the inferior longitudinal fasciculus in autism and associations with visual processing: a diffusion-weighted MRI study. Mol Autism 9:10PubMedPubMedCentralGoogle Scholar
  71. Bogerts B, Meertz E, Schönfeldt-Bausch R (1985) Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry 42:784–791PubMedGoogle Scholar
  72. Bogerts B, Falkai P, Greve B, Schneider T, Pfeiffer U (1993a) The neuropathology of schizophrenia: past and present. J Hirnforsch 34:193–205PubMedGoogle Scholar
  73. Bogerts B, Lieberman JA, Ashtari M, Bilder RM, DeGreef G, Lerner G et al (1993b) Hippocampus-amygdala volumes and psychopathology in chronic schizophrenia. Biol Psychiatry 33:236–246PubMedGoogle Scholar
  74. Bogousslavsky J, Regli F, Uske A (1988) Thalamic infarcts: clinical syndromes, etiology, and prognosis. Neurology 38:837–848PubMedGoogle Scholar
  75. Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  76. Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365PubMedGoogle Scholar
  77. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259Google Scholar
  78. Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15:6–31PubMedGoogle Scholar
  79. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol (Berl) 92:197–201Google Scholar
  80. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357PubMedGoogle Scholar
  81. Braak H, Del Tredici K (2015a) Neuroanatomy and pathology of sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol 215:1–162PubMedGoogle Scholar
  82. Braak H, Del Tredici K (2015b) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138:2814–2833PubMedGoogle Scholar
  83. Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol (Berl) 88:493–500Google Scholar
  84. Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzheimer’s Res 3:235–247Google Scholar
  85. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211Google Scholar
  86. Brabec J, Rulseh A, Pala A, Guerreiro H, Busková J, Petrovický P et al (2011) Volume of the amygdala is reduced in patients with narcolepsy – a structural MRI study. Biol Psychiatry 32(5):652–656Google Scholar
  87. Brady DR, Mufson EJ (1990) Amygdaloid pathology in Alzheimer’s disease: qualitative and quantitative analysis. Dementia 1:5–17Google Scholar
  88. Brettschneider J, Del Tredici K, Lee VM-Y, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120PubMedPubMedCentralGoogle Scholar
  89. Brion S, Mikol J (1978) Atteinte du noyau latéral dorsal du thalamus et syndrome de Korsakoff alcoolique. J Neurol Sci 38:249–261PubMedGoogle Scholar
  90. Broca P (1878) Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans le série des mammifères. Rev Antropol, 2e série 1:385–498Google Scholar
  91. Brockhaus H (1938) Zur normalen und pathologischen Anatomie des Mandelkerngebietes. J Psychol Neurol (Lpz) 49:1–136Google Scholar
  92. Brockhaus H (1942) Vergleichend-anatomische Untersuchungen über den Basalkernkomplex. J Psychol Neurol (Lpz) 51:57–95Google Scholar
  93. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig; English translation by LJ Garey (1999) Brodmann’s localisation in the cerebral cortex. Imperial College Press, LondonGoogle Scholar
  94. Broks P, Young AW, Maratos EJ, Coffey PJ, Calder AJ, Isaac C et al (1998) Face processing impairments after encephalitis: amygdala damage and recognition of fear. Neuropsychologia 36:59–70PubMedGoogle Scholar
  95. Brun A, Gustafson L (1976) Distribution of cerebral degeneration in Alzheimer’s disease. Acta Psychiatr Nervenkr 223:15–33Google Scholar
  96. Bruton CJ (1988) The neuropathology of temporal lobe epilepsy. Oxford University Press, New YorkGoogle Scholar
  97. Burdach KF (1819–1826) Vom Baue und Leben des Gehirns. Dyk, Leipzig (3 vols)Google Scholar
  98. Burmeister M, McInnis MG, Zöllner S (2008) Psychiatric genetics: progress amid controversy. Nat Rev Genet 9:527–540PubMedGoogle Scholar
  99. Burwell RD, Amaral DG (1998) Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol 398:179–205PubMedGoogle Scholar
  100. Burwell RD, Witter MP (2002) Basic anatomy of the parahippocampal region in monkeys and rats. In: Witter M, Wouterlood F (eds) The parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 35–59Google Scholar
  101. Cabeza R, Ciaramelli E, Olson IR, Moscovitch M (2008) The parietal cortex and episodic memory: an attentional account. Nat Rev Neurosci 9:613–625PubMedPubMedCentralGoogle Scholar
  102. Callen DJ, Black SE, Gao F, Caldwell CB, Szalai JP (2001) Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD. Neurology 57:1669–1674PubMedGoogle Scholar
  103. Carlsen J, Záborsky L, Heimer L (1985) Cholinergic projections from the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167PubMedGoogle Scholar
  104. Carmichael ST, Clugnet MC, Price JL (1994) Central olfactory connections in the macaque monkey. J Comp Neurol 346:403–434PubMedGoogle Scholar
  105. Carrera E, Bogousslavsky J (2006) The thalamus and behavior. Effects of anatomically distinct strokes. Neurology 66:1817–1823PubMedGoogle Scholar
  106. Casanova MF, Buxhoeveden D, Switala AE, Roy E (2002) Minicolumnar pathology in autism. Neurology 58:428–432PubMedGoogle Scholar
  107. Casanova MF, van Kooten IMJ, Switala AE, van Engeland H, Heinsen H, Steinbusch HWM et al (2006) Minocolumnar abnormalities in autism. Acta Neuropathol (Berl) 112:287–303Google Scholar
  108. Catani M, Dell’Acqua F, Thiebaut de Schotten M (2013) A revised limbic system model for memory, emotion and behaviour. Neurosci Biobehav Rev 37:1724–1727PubMedGoogle Scholar
  109. Cavanagh JB, Falconer MA, Meyer A (1958) Some pathogenetic problems of temporal lobe epilepsy. In: Baldwin M, Bailey P (eds) Temporal lobe epilepsy. Thomas, Springfield, pp 140–148Google Scholar
  110. Chow TW, Cummings JL (2000) The amygdala and Alzheimer’s disease. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 655–680Google Scholar
  111. Christiansen K, Metzler-Baddeley C, Parker GD, Muhlert N, Jones DK, Aggleton JP, Vahn SD (2016) Topographic separation of fornical fibers associated with the anterior and posterior hippocampus in the human brain: an MRI-diffusion study. Brain Behav 7:e00604PubMedPubMedCentralGoogle Scholar
  112. Chrobak JJ, Amaral DG (2007) Entorhinal cortex of the monkey. VII Intrinsic connections. J Comp Neurol 500:612–633PubMedGoogle Scholar
  113. Chronister RB, Sikes RW, White LE (1975) Postcommissural fornix: origin and distribution in a rodent. Neurosci Lett 1:199–202Google Scholar
  114. Collins G, Scholtens LH, Kahn RS, Hillegers MHJ, van den Heuvel MP (2017) Affectedanatomical rich club and structural-functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biol Psychiatry 82:746–755Google Scholar
  115. Conrad LC, Leonard CM, Pfaff DW (1974) Connections of the median and dorsal raphe nuclei of the rat: an autoradiographic and degeneration study. J Comp Neurol 156:179–206PubMedGoogle Scholar
  116. Consensus Report (1998) Consensus report of the working group on “molecular and biochemical markers of Alzheimer’s disease”. Neurobiol Aging 19:109–116Google Scholar
  117. Coote JH, Hilton SM, Zbrozyna AW (1973) The pontomedullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J Physiol Lond 229:257–274PubMedPubMedCentralGoogle Scholar
  118. Corkin S (1984) Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H.M. Semin Neurol 4:249–259Google Scholar
  119. Corkin S, Amaral DG, González RG, Johnson KA, Hyman BT (1997) H.M.’s Medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci 17:3964–3979PubMedPubMedCentralGoogle Scholar
  120. Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol 15:225–230PubMedGoogle Scholar
  121. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff JA et al (2014) Primary age-related neuropathy associated with human aging. Acta Neuropathol (Berl) 128:755–766Google Scholar
  122. Crosby EC, Humphrey T (1941) Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J Comp Neurol 74:309–352Google Scholar
  123. Cummings JL, Tomiyasu U, Read S, Benson DF (1984) Amnesia with hippocampal lesions after cardiopulmonary arrest. Neurology 34:679–681PubMedGoogle Scholar
  124. Daitz HM, Powell TPS (1954) Studies of the connexions of the fornix system. J Neurol Neurosurg Psychiatry 17:75–82PubMedPubMedCentralGoogle Scholar
  125. Damasio AR, Eslinger PJ, Damasio H, Van Hoesen GW, Cornell S (1985a) Multimodal amnesic syndrome following bilateral temporal and basal forebrain damage. Arch Neurol 42:252–259PubMedGoogle Scholar
  126. Damasio AR, Graff-Radford NR, Eslinger PJ, Damasio H, Kassell N (1985b) Amnesia following basal forebrain lesions. Arch Neurol 42:263–271PubMedGoogle Scholar
  127. Davis M (1992a) The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 255–306Google Scholar
  128. Davis M (1992b) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375PubMedGoogle Scholar
  129. de Lacalle S, Saper CB (2000) Calcitonin gene-related peptide-like immunoreactivity marks putative visceral sensory pathways in human brain. Neuroscience 100:115–130PubMedGoogle Scholar
  130. de Lacalle S, Lim C, Sobreviela T, Mufson EJ, Hersh LB, Saper CB (1994) Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. J Comp Neurol 345:321–344PubMedGoogle Scholar
  131. de Lanerolle NC, Kim JH, Williamson A, Spencer SS, Zaveri HP, Eid T, Spencer DD (2003) A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories. Epilepsia 44:677–687PubMedGoogle Scholar
  132. de Olmos J (1972) The amygdaloid projection field in the rat as studied with the cupric-silver method. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 145–204Google Scholar
  133. de Olmos J (2004) Amygdala. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 739–868Google Scholar
  134. de Olmos J, Ingram WR (1972) The projection fields of the stria terminalis in the rat brain. An experimental study. J Comp Neurol 146:303–334PubMedGoogle Scholar
  135. Delacourte A, David JP, Sergeant N, Buee L, Watter A, Vermersch P et al (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52:1158–1165PubMedGoogle Scholar
  136. Demeter S, Rosene DL, Van Hoesen GW (1985) Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: the structure and organization of the hippocampal commissures. J Comp Neurol 233:30–47PubMedGoogle Scholar
  137. Demeter S, Rosene DL, Van Hoesen GW (1990) Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques. J Comp Neurol 302:29–53PubMedGoogle Scholar
  138. deToledo-Morrell L, Sullivan MP, Morrell F, Wilson RS, Bennett DA, Spencer S (1997) Alzheimer’s disease: in vivo detection of differential vulnerability of brain regions. Neurobiol Aging 18:463–468PubMedGoogle Scholar
  139. deToledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S et al (2004) MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 25:1197–1203PubMedGoogle Scholar
  140. deToledo-Morrell L, Stoub TR, Wang C (2007) Hippocampal atrophy and disconnection in incipient and mild Alzheimer disease. Prog Brain Res 163:741–753PubMedGoogle Scholar
  141. Di Ieva A, Tsabitscher M, Rodriguez y Baena R (2007) Lancisi’s nerves and the seat of the soul. Neurosurgery 60:563–568PubMedGoogle Scholar
  142. Di Ieva A, Fathalla H, Cusimano MD, Tsabitscher M (2015) The indusium griseum and the longitudinal striae of the corpus callosum. Cortex 62:34–40PubMedGoogle Scholar
  143. Ding S-L (2013) Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum. J Comp Neurol 521:4145–4162PubMedGoogle Scholar
  144. Ding S-L, Van Hoesen GW (2010) Borders, extent, and topography of human perirhinal cortex as revealed using modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359–1379PubMedPubMedCentralGoogle Scholar
  145. Ding S-L, Van Hoesen GW, Rockland K (2000) Inferior parietal lobule projections to the presubiculum and neighbouring ventromedial temporal cortical areas. J Comp Neurol 425:510–530PubMedGoogle Scholar
  146. Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brainstem and olfactory bulb. Review of some functional correlates. Brain Res 93:385–398PubMedGoogle Scholar
  147. Dolan RJ (2000) Functional neuroimaging of the human amygdala during emotional processing and learning. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 631–653Google Scholar
  148. Dong H-W, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Rev 38:192–246PubMedGoogle Scholar
  149. Doty RL, Shaman P, Applebaum SL, Giberson R, Sikorski L, Rosenberg L (1984) Smell identification ability: changes with age. Science 226:1441–1443PubMedGoogle Scholar
  150. Druga R (1970) Neocortical projections on the amygdala (an experimental study with the Nauta method). J Hirnforsch 11:467–476Google Scholar
  151. Dudek FE, Sutula TP (2007) Epileptogenesis in the dentate gyrus: a critical perspective. Prog Brain Res 163:755–773PubMedGoogle Scholar
  152. Dulac C, Toledo AT (2003) Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4:551–562PubMedGoogle Scholar
  153. Dusoir H, Kapur N, Brynes DP, McKinstry S, Hoare RD (1990) The role of diencephalic pathology in human memory disorder. Brain 113:1695–1706PubMedGoogle Scholar
  154. Duvernoy HM (1998) The human Hippocampus. Functional anatomy, vascularization and serial sections with MRI, 2nd edn. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  155. Elliot Smith G (1897) The morphology of the indusium griseum and striae Lancisii. Anat Anz 13:23–37Google Scholar
  156. Falkai P, Bogerts B, Rozumek M (1988) Limbic pathology in schizophrenia: the entorhinal region – a morphometric study. Biol Psychiatry 24:515–521Google Scholar
  157. Falkai P, Schneider-Axmann T, Honer WG (2000) Entorhinal cortex pre-alpha clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 47:937–943PubMedGoogle Scholar
  158. Filimonoff IN (1947) A rational subdivision of the cerebral cortex. Arch Neurol Psychiatr 58:296–311Google Scholar
  159. Fox NC, Freeborough PA (1997) Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer’s disease. J Magn Reson Imaging 7:1069–1075PubMedGoogle Scholar
  160. Foxe JJ, Molholm S, Baudouin J, Wallace MT (2018) Editorial: explorations and perspectives on the neurobiological bases of autism spectrum disorder. Eur J Neurosci 47:488–496PubMedGoogle Scholar
  161. Freese JL, Amaral DG (2005) The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 486:295–317PubMedGoogle Scholar
  162. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470PubMedGoogle Scholar
  163. Frisoni GB, Ganzola R, Canu E, Rüb U, Pizzini FB, Alessandrini F et al (2008) Mapping local hippocampal changes in Alzheimer’s disease and normal ageing with MRI at 3 tesla. Brain 131:3266–3276PubMedGoogle Scholar
  164. Fudge JL, Kunishio K, Walsh P, Richard C, Haber SN (2002) Amygdaloid projections to ventromedial striatal territories in the primate. Neuroscience 110:257–275PubMedGoogle Scholar
  165. Gaffan D, Gaffan EA (1991) Amnesia in man following transection of the fornix: a review. Brain 114:2611–2618PubMedGoogle Scholar
  166. Garcia-Sierra F, Hauw JJ, Duyckaerts C, Wischik CM, Munoz J, Mena R (2000) The extent of neurofibrillary pathology in the perforant pathway neurons is the key determinant of dementia in the very old. Acta Neuropathol (Berl) 100:29–35Google Scholar
  167. Garcia-Sierra F, Wischik CM, Harrington CR, Luna-Munoz J, Mena R (2001) Accumulation of C-terminally truncated tau protein associated with vulnerability of the perforant pathway in early stages of neurofibrillary pathology in Alzheimer’s disease. J Chem Neuroanat 22:65–77PubMedGoogle Scholar
  168. Gastaut H, Lammers HJ (1961) Anatomie du rhinencéphale. Masson, ParisGoogle Scholar
  169. German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21:305–312PubMedGoogle Scholar
  170. Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111PubMedGoogle Scholar
  171. Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279PubMedGoogle Scholar
  172. Glees P, Griffith HB (1952) Bilateral destruction of the hippocampus (Cornu Ammonis) in a case of dementia. Psychiatr Neurol Med Psychol (Lpz) 123:193–204Google Scholar
  173. Gloor P, Salanova V, Olivier A, Quesnay LF (1993) The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway. Brain 116:1249–1273PubMedGoogle Scholar
  174. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465PubMedGoogle Scholar
  175. Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210PubMedGoogle Scholar
  176. Gold G, Bouras C, Kovari E, Canuto A, González-Glaria B, Malki A et al (2000) Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol (Berl) 99:579–582Google Scholar
  177. Gómez-Isla T, Hyman BT (1997) Connections and cognitive impairment in Alzheimer’s disease. In: Hyman BT, Duyckaerts C, Christen Y (eds) Connections, cognition, and Alzheimer’s disease. Springer, Berlin/Heidelberg/New York, pp 149–166Google Scholar
  178. Gómez-Isla T, Price JL, McKeel DW, Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500PubMedPubMedCentralGoogle Scholar
  179. Gosche KM, Mortimer JA, Smith CD, Markesbery WR, Snowdon DA (2002) Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology 58:1476–1482PubMedGoogle Scholar
  180. Grabowski TJ, Damasio AR (2004) Definition, clinical features and neuroanatomical basis of dementia. In: Esiri MM, Lee VM-Y, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge, pp 1–33Google Scholar
  181. Graff-Radford NR, Tranel D, Van Hoesen GW, Brandt JP (1990) Diencephalic amnesia. Brain 113:1–25PubMedGoogle Scholar
  182. Groenewegen HJ, Room P, Witter M, Lohman AHM (1982) Cortical afferents of the nucleus accumbens studied with anterograde and retrograde transport techniques. Neuroscience 7:977–995PubMedGoogle Scholar
  183. Gruner JE (1956) Sur la pathologie des encéphalopathies alcooliques. Rev Neurol (Paris) 94:682–689Google Scholar
  184. Grünthal E (1939) Ueber das Corpus mamillare und den Korsakowschen Symptomenkomplex. Confin Neurol (Basel) 2:65–95Google Scholar
  185. Grünthal E (1947) Ueber das klinische Bild nach umschriebenem beiderseitigem Ausfall der Ammonshornrinde. Monatsschr Psychiatr Neurol 113:1–36PubMedGoogle Scholar
  186. Halpern M (1987) The organization and function of the vomeronasal system. Annu Rev Neurosci 10:325–362PubMedGoogle Scholar
  187. Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, Khachaturian AS et al (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141:1917–1933PubMedPubMedCentralGoogle Scholar
  188. Hanover M, Meldrum BS (1996) Epilepsy. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 931–971Google Scholar
  189. Harding A, Halliday G, Caine D, Kril J (2000) Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain 123:141–154PubMedGoogle Scholar
  190. Harding A, Stimson E, Henderson JM, Halliday GM (2002) Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain 125:2431–2445PubMedGoogle Scholar
  191. Heimer L (1969) The secondary olfactory connections in mammals, reptiles and sharks. Ann N Y Acad Sci 167:129–146Google Scholar
  192. Heimer L (2000) Basal forebrain in the context of schizophrenia. Brain Res Rev 31:205–235PubMedGoogle Scholar
  193. Heimer L, Van Hoesen GW (2006) The limbic lobe and its output channels: implications for emotional functions and adaptive behaviour. Neuroscience Biobehav Rev 30:126–147Google Scholar
  194. Heimer L, Van Hoesen GW, Rosene DL (1977) The olfactory pathways and the anterior perforated substance in the primate brain. Int J Neurosci 12:42–52Google Scholar
  195. Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87Google Scholar
  196. Heimer L, de Olmos J, Alheid GF, Zaborsky L (1991) “Perestroika” in the basal forebrain: opening the border between neurology and psychiatry. Prog Brain Res 87:109–165PubMedGoogle Scholar
  197. Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997a) The accumbens: beyond the core-shell dichotomy. J Neuropsychiat Clin Neurosci 9:354–381Google Scholar
  198. Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997b) Substantia innominata: a notion which impedes clinico-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006PubMedGoogle Scholar
  199. Heimer L, de Olmos J, Alheid GF, Pearson J, Sakamoto N, Marksteiner J, Switzer RC (1999) The human basal forebrain, part 2. Handb Chem Neuroanat 15:57–226Google Scholar
  200. Heimer L, Van Hoesen GW, Trimble M, Zahm DS (2008) Anatomy of neuropsychiatry. Elsevier, AmsterdamGoogle Scholar
  201. Herzog AG, Van Hoesen GW (1976) Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115:57–69PubMedGoogle Scholar
  202. Hildebrandt H, Muller S, Bussmann-Mork B, Goebel S, Eilers N (2001) Are some memory deficits unique to lesions of the mammillary bodies? J Clin Exp Neuropsychol 23:490–501PubMedGoogle Scholar
  203. Hilton SM, Zbrozyna AW (1963) Amygdaloid region for defence reactions and its efferent pathways to the brainstem. J Physiol Lond 165:160–173PubMedPubMedCentralGoogle Scholar
  204. Hof PR, Bierer LM, Perl DP, Delacourte A, Buee L, Bouras C, Morrison JH (1992) Evidence for early vulnerability of the medial and inferior aspects of the temporal lobe in an 82-year-old patient with preclinical signs of dementia. Regional and laminar distribution of neurofibrillary tangles and senile plaques. Arch Neurol 49:946–953PubMedGoogle Scholar
  205. Hogan RE, Mark KE, Wang L, Joshi S, Miller MI, Bucholz RD (2000) Mesial temporal sclerosis and temporal lobe epilepsy: MR imaging deformation-based segmentation of the hippocampus in five patients. Radiology 216:291–297PubMedGoogle Scholar
  206. Holstege G (1992) The emotional motor system. Eur J Morphol 30:67–79PubMedGoogle Scholar
  207. Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 58:379–391PubMedGoogle Scholar
  208. Holstege G, Mouton LJ, Gerrits NM (2004) Emotional motor system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1306–1324Google Scholar
  209. Hopkins DA (1975) Amygdalotegmental projections in the rat, cat and rhesus monkey. Neurosci Lett 1:263–270PubMedGoogle Scholar
  210. Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–548PubMedGoogle Scholar
  211. Horel JA (1978) The neuroanatomy of amnesia: a critique of the hippocampal memory hypothesis. Brain 101:403–445PubMedGoogle Scholar
  212. Hori A (1997) Anatomical variants of brain structure: confused spatial relationship of the fornix to the corpus callosum and anterior commissure. Ann Anat 179:545–547PubMedGoogle Scholar
  213. Hori A, Stan AC (2004) Supracallosal longitudinal fibre bundle: heterotopic cingulum, dorsal fornix or Probst bundle? Neuropathology 24:56–59PubMedGoogle Scholar
  214. Hořinek D, Petrovický P, Hort J, Krasensky J, Brabec J, Bojar M et al (2005) Amygdalar volume and psychiatric symptoms in Alzheimer’s disease: an MRI analysis. Acta Neurol Scand 113:40–45Google Scholar
  215. Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535:195–204PubMedGoogle Scholar
  216. Houser CR, Miyahashi JE, Swartz BE, Walsh GO, Rich JR, Delgado-Escueta AV (1990) Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10:267–282PubMedPubMedCentralGoogle Scholar
  217. Houser CR, Swartz BE, Walsh GO, Delgado-Escueta AV (1992) Granule cell disorganization in the dentate gyrus: possible alterations of neuronal migration in human temporal lobe epilepsy. Epilepsy Res Suppl 9:41–48PubMedGoogle Scholar
  218. Hudson LP, Munoz DG, Miller L, McLachlan RS, Girvin JP, Blume WT (1993) Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 33:622–631PubMedGoogle Scholar
  219. Hyman BT, Trojanowski JQ (1997) Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer’s disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the Neuropathological Assessment of Alzheimer’s disease. J Neuropathol Exp Neurol 56:1095–1097PubMedGoogle Scholar
  220. Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20:472–481PubMedGoogle Scholar
  221. Hyman BT, Kromer LJ, Van Hoesen GW (1988) A direct demonstration of the perforant pathway terminal zone in Alzheimer’s disease using the monoclonal antibody Alz-50. Brain Res 450:392–397PubMedGoogle Scholar
  222. Hyman BT, Van Hoesen GW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40:1721–1730PubMedGoogle Scholar
  223. Hyman BT, Arriagada PV, McKee AC, Ghika J, Corkin S, Growdon JH (1991) The earliest symptoms of Alzheimer’s disease: anatomic correlates. Soc Neurosci Abstr 17:352Google Scholar
  224. Hyman BT, Phelphs CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC et al (2012) National Institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13PubMedPubMedCentralGoogle Scholar
  225. Insausti R (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3:19–26PubMedGoogle Scholar
  226. Insausti R, Amaral DG (2008) Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents. J Comp Neurol 509:608–641PubMedPubMedCentralGoogle Scholar
  227. Insausti R, Amaral DG (2012) Hippocampal formation. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 896–942Google Scholar
  228. Insausti R, Amaral DG, Cowan WM (1987a) The entorhinal cortex of the monkey. II Cortical afferents. J Comp Neurol 264:356–395PubMedGoogle Scholar
  229. Insausti R, Amaral DG, Cowan WM (1987b) Ibid. III. Subcortical afferents. J Comp Neurol 264:396–408PubMedGoogle Scholar
  230. Insausti R, Tuñón T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytoarchitectonic analysis. J Comp Neurol 355:171–198PubMedGoogle Scholar
  231. Insausti R, Insausti AM, Sobreviela T, Salinas A, Martínez-Peñuela JM (1998a) Human medial temporal lobe aging: anatomical basis of memory preservation. Microsc Res Techn 43:8–15Google Scholar
  232. Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P et al (1998b) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19:659–671PubMedGoogle Scholar
  233. Insausti R, Muñoz-López M, Insausti AM, Artacho-Pérula E (2017) The human periallocortex: layer pattern in presubiculum, parasubiculum and entorhinal cortex. A review. Front Neuroanat 11:84PubMedPubMedCentralGoogle Scholar
  234. Insausti R, Córcoles-Parada M, Ubero MM, Rodado A, Insausti AM, Muñoz-López M (2019) Cytoarchitectonic areas of the gyrus ambiens in the human brain. Front Neuroanat 13:21PubMedPubMedCentralGoogle Scholar
  235. Irle E, Markowitsch HJ (1982) Connections of the hippocampal formation, mamillary bodies, anterior thalamus and cingulate cortex. Exp Brain Res 47:79–94PubMedGoogle Scholar
  236. Iwai E, Yukie M (1987) Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta and M. fascicularis). J Comp Neurol 261:362–387PubMedGoogle Scholar
  237. Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG et al (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794PubMedPubMedCentralGoogle Scholar
  238. Jack CR Jr, Petersen RC, Xu Y, O’Brien PC, Smith GE, Ivnik RJ et al (1998) Rate of medial temporal lobe atrophy in typical aging and Alzheimer’s disease. Neurology 51:993–999PubMedPubMedCentralGoogle Scholar
  239. Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cho RH, O’Brien PC et al (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757PubMedPubMedCentralGoogle Scholar
  240. Jack CR Jr, Shiung MM, Weigand SD, O’Brien PC, Gunter JL, Boeve BF et al (2005) Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227–1231PubMedPubMedCentralGoogle Scholar
  241. Jack CR Jr, Bennett DA, Blennow K, Carrillo ML, Dunn B, Haeberlein SB et al (2018) NIA-AA research guidelines: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–565PubMedPubMedCentralGoogle Scholar
  242. Jacobson S, Trojanowski JQ (1975) Amygdaloid projections to prefrontal granular cortex in rhesus monkeys demonstrated with horseradish peroxidase. Brain Res 100:132–139PubMedGoogle Scholar
  243. Jafek BW (1983) Ultrastructure of human nasal mucosa. Laryngoscope 93:1576–1599PubMedGoogle Scholar
  244. Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326PubMedGoogle Scholar
  245. Jakob H, Beckmann H (1994) Circumscribed malformation and nerve cell alterations in the entorhinal cortex of schizophrenics. Pathogenetic and clinical aspects. J Neural Transm 98:83–106Google Scholar
  246. James BD, Wilson RS, Boyle PA, Trojanowski JQ, Bennett DA, Schneider JA (2016) TDP-43 stage, mixed pathologies, and clinical Alzheimer’s-type dementia. Brain 139:2983–2993PubMedPubMedCentralGoogle Scholar
  247. Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481Google Scholar
  248. Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR Jr et al (2014) Staging TDP-43 pathology in Alzheimer’s disease. ActaNeuropathol (Berl) 127:441–450Google Scholar
  249. Josephs KA, Murray ME, Whitwell JL, Tosakulwong N, Weigand SD, Petrucelli L et al (2016) Updated TDP-43 in Alzheimer’s disease staging schema. Ata Neuropathol (Berl) 131:571–585Google Scholar
  250. Juottonen K, Laakso MP, Insausti R, Lehtovirta M, Pitkänen A, Partanen K, Soininen H (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 19:15–22PubMedGoogle Scholar
  251. Jürgens U (1982) The hypothalamus and behavioral patterns. Prog Brain Res 41:445–463Google Scholar
  252. Kaada BR (1972) Stimulation and regional ablation of the amygdaloid cortex with reference to functional representations. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 205–282Google Scholar
  253. Kaas JH, Lyon DC (2007) Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Res Rev 55:285–296PubMedPubMedCentralGoogle Scholar
  254. Kahn EA, Crosby EC (1972) Korsakoff’s syndrome associated with surgical lesions involving the mammillary bodies. Neurology 22:117–125PubMedGoogle Scholar
  255. Kallmann FJ, Schoenfeld WA, Barrera SE (1944) The genetic aspects of primary eunuchoidism. Am J Ment Defic 48:203–236Google Scholar
  256. Kalus P, Slotboom J, Gallinat J, Mahlberg R, Cattapan-Ludwig K, Wiest R et al (2006) Examining the gateway to the limbic system with diffusion tensor imaging: the perforant pathway in dementia. NeuroImage 30:713–720PubMedGoogle Scholar
  257. Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2:217–250Google Scholar
  258. Kapur N, Thompson S, Cook P, Lang D, Brice J (1996) Anterograde but not retrograde memory loss following combined mammillary body and medial thalamic lesions. Neuropsychologia 34:1–8PubMedGoogle Scholar
  259. Kawasaki Y, Maeda Y, Urata K, Higashima M, Yamaguchi N, Suzuki M et al (1993) A quantitative magnetic resonance imaging study of patients with schizophrenia. Eur Arch Psychiatr Clin Neurosci 242:268–272Google Scholar
  260. Kelley AE, Domesick VB (1982) The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde horseradish peroxidase study. Neuroscience 7:2321–2335PubMedGoogle Scholar
  261. Kelley AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat – an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7:615–630Google Scholar
  262. Kemper TL, Bauman ML (1993) The contribution of neuropathologic studies to the understanding of autism. Neurol Clin 11:175–187PubMedGoogle Scholar
  263. Khachaturian Z (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097–1105PubMedGoogle Scholar
  264. Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol 25:677–691PubMedGoogle Scholar
  265. Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic projections to prefrontal and parietal cortex in the rhesus monkey. Science 187:660–662PubMedGoogle Scholar
  266. Kile SJ, Ellis WG, Olichney JM, Farias S, DeCarli C (2009) Alzheimer abnormalities of the amygdala with Klüver-Bucy syndrome symptoms. Arch Neurol 66:125–129PubMedPubMedCentralGoogle Scholar
  267. Kjaer I, Fischer-Hansen B (1996) The human vomeronasal organ: prenatal developmental stage, and distribution of luteinizing hormone-releasing hormone. Eur J Oral Sci 104:34–40PubMedGoogle Scholar
  268. Kling AS, Brothers LA (1992) The amygdala and social behavior. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 353–378Google Scholar
  269. Kling AS, Steklis HD, Deutsch S (1979) Radiotelemetered activity from the amygdala during social interactions in the monkey. Exp Neurol 66:688–696Google Scholar
  270. Klingler J (1948) Die makroskopische Anatomie der Ammonsformation. Denkschriften der Schweizerischen Naturforschenden Gesellschaft, vol 78. Fretz, ZürichGoogle Scholar
  271. Klüver H, Bucy PC (1937) “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkey. Am J Phys 119:352–353Google Scholar
  272. Klüver H, Bucy PC (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatr 42:979–1000Google Scholar
  273. Kobayashi Y, Amaral DG (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48–79PubMedGoogle Scholar
  274. Kobayashi Y, Amaral DG (2007) Ibid. III. Cortical efferents. J Comp Neurol 502:810–833PubMedGoogle Scholar
  275. Köhler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the midbrain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7:951–975PubMedGoogle Scholar
  276. Koldewyn K, Yendiki A, Weigelt S, Gweon H, Julian J, Richardson H et al (2014) Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proc Nath Acad Sci USA 111:1981–1986Google Scholar
  277. Kondo H, Lavenex P, Amaral DG (2008) Intrinsic connections of the macaque monkey hippocampal formation: I. Dentate gyrus. J Comp Neurol 511:497–520PubMedPubMedCentralGoogle Scholar
  278. Kondo H, Lavenex P, Amaral DG (2009) Ibid. II. CA3 connections. J Comp Neurol 515:349–377PubMedPubMedCentralGoogle Scholar
  279. Kordower JH, Piecinski P, Rakic P (1992) Neurogenesis of the amygdaloid nuclear complex in the rhesus monkey. Dev Brain Res 68:9–15Google Scholar
  280. Korsakoff SS (1889) Sur une forme de maladie mentale combinée avec la neurite multiple dégénérative. In: Congrès International de Médecine Mentale. Masson, Paris, pp 75–94; English translation by M Victor, PI Yakovlev (1955) Neurology 5:395–406Google Scholar
  281. Kosel KC, Van Hoesen GW, West JR (1981) Olfactory bulb projections to the parahippocampal area of the rat. J Comp Neurol 198:467–482PubMedGoogle Scholar
  282. Kosel KC, Van Hoesen GW, Rosene DL (1982) Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey. Brain Res 244:201–213PubMedGoogle Scholar
  283. Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N et al (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692PubMedGoogle Scholar
  284. Krettek JE, Price JL (1974) A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res 67:169–174PubMedGoogle Scholar
  285. Krettek JE, Price JL (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722PubMedGoogle Scholar
  286. Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brain stem in the rat and cat. J Comp Neurol 178:225–253PubMedGoogle Scholar
  287. Kreutzer EW, Jafek BW (1980) The vomeronasal organ of Jacobson in the human embryo and fetus. Otolaryngol Head Neck Surg 88:119–123PubMedGoogle Scholar
  288. Kromer Vogt LJ, Hyman BT, Van Hoesen GW, Damasio AR (1990) Pathological alterations in the amygdala in Alzheimer’s disease. Neuroscience 37:377–385PubMedGoogle Scholar
  289. Kubicki M, Shenton ME (2014) Diffusion tensor imaging findings and their implications in schizophrenia. Curr Opin Psychiatry 27:179–184PubMedGoogle Scholar
  290. Kuzniecky R, de la Sayette V, Ethier R, Melanson D, Andermann F, Berkovic S et al (1987) Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann Neurol 22:341–347PubMedGoogle Scholar
  291. Laakso MP, Lehtovirta M, Partanen K, Riekinen PJ, Soininen H (2000) Hippocampus in Alzheimer’s disease: a 3-year follow-up MRI study. Biol Psychiatry 47:557–561PubMedGoogle Scholar
  292. Lace G, Savva GM, Forster G, de Silva R, Brayne C, Matthews FE et al (2009) Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain 132:1324–1334PubMedGoogle Scholar
  293. Lammers HJ (1972) The neural connections of the amygdaloid complex in mammals. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 123–144Google Scholar
  294. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70PubMedGoogle Scholar
  295. Lauer EW (1945) The nuclear pattern and fiber connections of certain basal telencephalic centers in the macaque. J Comp Neurol 82:215–255Google Scholar
  296. Lavenex P, Suzuki WA, Amaral DG (2002) Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J Comp Neurol 447:394–420PubMedGoogle Scholar
  297. LeDoux JE (1992) Emotion and the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 339–351Google Scholar
  298. LeDoux JE (2000a) Emotional circuits in the brain. Annu Rev Neurosci 23:155–184PubMedGoogle Scholar
  299. LeDoux JE (2000b) The amygdala and emotion: a view through fear. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 289–310Google Scholar
  300. LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body of the rat. J Comp Neurol 242:172–213Google Scholar
  301. LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–529PubMedPubMedCentralGoogle Scholar
  302. LeDoux JE, Farb C, Ruggiero DA (1990a) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054PubMedPubMedCentralGoogle Scholar
  303. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990b) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10:1062–1069PubMedPubMedCentralGoogle Scholar
  304. Lehtonen R (1973) Learning, memory and intellectual performance in a chronic state of amnesic syndrome. Acta Psychiatr Neurol Scand Suppl 54:1–156Google Scholar
  305. Leichnetz GR, Astruc J (1977) The course of some prefrontal corticofugals to the pallidum, substantia innominata, and amygdaloid complex in monkeys. Exp Neurol 54:104–109PubMedGoogle Scholar
  306. Leonard CM, Rolls ET, Wilson FA, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176PubMedGoogle Scholar
  307. Lim C, Blume HW, Madsen JR, Saper CB (1997a) Connections of the hippocampal formation in humans. I The mossy fiber pathway. J Comp Neurol 385:325–351PubMedGoogle Scholar
  308. Lim C, Mufson EJ, Kordower JH, Blume HW, Madsen JR, Saper CB (1997b) Ibid. II. The endfolial fiber pathway. J Comp Neurol 385:352–371PubMedGoogle Scholar
  309. Lindvall O, Björklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain. Acta Physiol Scand 412:1–48Google Scholar
  310. Lipson SE, Sacks O, Devinsky O (2003) Selective emotional detachment from family after right temporal lobectomy. Epilepsy Behav 4:340–342PubMedGoogle Scholar
  311. Llamas A, Avendaño C, Reinoso-Suárez F (1977) Amygdaloid projections to prefrontal and motor cortex. Science 195:794–797PubMedGoogle Scholar
  312. Lohman AHM, Lammers HJ (1967) On the structure and fibre connections of the olfactory system in mammals. Prog Brain Res 23:65–82PubMedGoogle Scholar
  313. Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I The area entorhinalis. J Psychol Neurol (Lpz) 45:381–438Google Scholar
  314. Lorente de Nó R (1934) Ibid. II. Continuation of the study of the ammonic system. J Psychol Neurol (Lpz) 46:113–177Google Scholar
  315. Macchi G, Bentivoglio M, Rossini P, Tempesta E (1978) The basolateral amygdaloid projections in the cat. Neurosci Lett 9:347–351PubMedGoogle Scholar
  316. MacLean PD (1949) Psychosomatic disease and the “visceral” brain. Recent developments bearing on the Papez theory of emotion. Psychosom Med 11:338–353PubMedGoogle Scholar
  317. MacLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portions of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol 4:407–418PubMedGoogle Scholar
  318. MacLean PD (1958) Contrasting functions of limbic and neocortical systems of the brain and their relevance to psychophysiological aspects of medicine. Am J Med 25:611–626PubMedGoogle Scholar
  319. MacLean PD (1990) The triune brain in evolution. Plenum, New YorkGoogle Scholar
  320. Maglóczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28:334–340PubMedGoogle Scholar
  321. Mahut H, Zola-Morgan S, Moss S (1982) Hippocampal resections impair associative learning and recognition memory in the monkey. J Neurosci 2:1214–1229PubMedPubMedCentralGoogle Scholar
  322. Mair WGP, Warrington EK, Weiskrantz L (1979) Memory disorder in Korsakoff psychosis. A neuropathological and neuropsychological investigation of two cases. Brain 102:749–783PubMedGoogle Scholar
  323. Malamud N, Skillicorn SA (1956) Relationship between the Wernicke and Korsakoff syndrome: a clinicopathological study of seventy cases. Arch Neurol Psychiatr 76:585–596Google Scholar
  324. Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelta M (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716PubMedGoogle Scholar
  325. Maquet P, Peters JM, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383:163–166PubMedGoogle Scholar
  326. Markowitsch HJ, Pritzel M (1985) The neuropathology of amnesia. Prog Neurobiol 25:189–288PubMedGoogle Scholar
  327. Markowitsch HJ, Calabrese P, Würker M, Durwen MF, Kessler J, Babinsky R et al (1994) The amygdala’s contribution to memory – a PET study on two patients with Urbach-Wiethe disease. Neuroreport 5:1349–1352Google Scholar
  328. Marquie M, Normandia MD, Vanderburg CR, Costantino I, Bien EA, Rycyna LG et al (2015) Validating novel tau PET tracer [f-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78:787–800PubMedPubMedCentralGoogle Scholar
  329. Martínez-García F, Novejarque A, Lanuzo E (2008) Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Res Bull 75:206–213PubMedGoogle Scholar
  330. Masliah E, Mallory M, Alford M, DeTeresa R, Iwai A, Saitoh T (1997) Molecular mechanisms of synaptic disconnection in Alzheimer’s disease. In: Hyman BT, Duyckaerts C, Christen C (eds) Connections, cognition, and Alzheimer’s disease. Springer, Berlin/Heidelberg/New York, pp 121–150Google Scholar
  331. McConnell J, Angevine JB (1983) Time of neuron origin in the amygdaloid complex of the mouse. Brain Res 272:150–156PubMedGoogle Scholar
  332. McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332PubMedGoogle Scholar
  333. McDonald B, Highley JR, Walker MA, Herron BM, Cooper SJ, Esiri MM et al (2000) Anomalous asymmetry of fusiform and parahippocampal gyrus gray matter in schizophrenia: a postmortem study. Am J Psychiatr 157:40–47PubMedGoogle Scholar
  334. McEntee WJ, Biber MP, Perl DP, Benson FD (1976) Diencephalic amnesia: a reappraisal. J Neurol Neurosurg Psychiatry 39:436–441PubMedPubMedCentralGoogle Scholar
  335. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroup on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269PubMedPubMedCentralGoogle Scholar
  336. Mehler WR (1980) Subcortical afferent connections of the amygdala in the monkey. J Comp Neurol 190:733–762PubMedGoogle Scholar
  337. Meibach RC, Siegel A (1975) The origin of fornix fibres which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508–512PubMedGoogle Scholar
  338. Meredith GE, Pattiselano A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k. J Comp Neurol 365:628–639PubMedGoogle Scholar
  339. Mesulam M-M (2000) Aging, Alzheimer’s disease, and dementia. Clinical and neurobiological perspectives. In: Mesulam M-M (ed) Principles of behavioral and cognitive neurology, 2nd edn. Oxford University Press, New York, pp 439–522Google Scholar
  340. Mesulam M-M, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation of the human brain; observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 274:216–240Google Scholar
  341. Mesulam M-M, Van Hoesen GW (1976) Acetylcholinesterase-rich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res 109:152–157PubMedGoogle Scholar
  342. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197PubMedGoogle Scholar
  343. Mesulam M-M, Mufson EJ, Wainer BH (1986) Three-dimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Res 367:301–308PubMedGoogle Scholar
  344. Mesulam M-M, Mash L, Hersh L, Brothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra and red nucleus. J Comp Neurol 323:252–268PubMedGoogle Scholar
  345. Meyer M, Allison AC (1949) An experimental investigation of the connexions of the olfactory tracts in the monkey. J Neurol Neurosurg Psychiatry 12:274–286PubMedPubMedCentralGoogle Scholar
  346. Meyer G, Gonzalez-Hernandez T, Carrillo-Padilia F, Ferres-Torres F (1989) Aggregations of granule cells in the basal forebrain (islands of Calleja). A Golgi and cytoarchitectonic study in different mammals including man. J Comp Neurol 284:405–478PubMedGoogle Scholar
  347. Meynert T (1872) Vom Gehirne der Säugethiere. In: Stricker S (Hrsg) Handbuch der Lehre von den Geweben des Menschen und der Thiere, Vol 2. Engelmann, Leipzig, pp 694–808 (English translation by Putnam JJ, 1872: Stricker S (ed) Manual of histology. William Wood, New York, pp 650–766)Google Scholar
  348. Michel D, Laurent B, Foyatier N, Blanc A, Portafix M (1982) Infarctus thalamique paramédian gauche. Etude de la mémoire et du langage Rev Neurol (Paris) 138:533–550Google Scholar
  349. Mikkonen M, Soininen H, Pitkänen A (1997) Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. J Comp Neurol 388:64–88PubMedGoogle Scholar
  350. Milner B (1972) Disorders of learning and memory after temporal lobe lesions in man. Clin Neurosurg 19:421–446PubMedGoogle Scholar
  351. Milner B, Corkin S, Teuber HL (1968) Further analysis of the hippocampal amnesic syndrome: fourteen year follow-up study of H.M. Neuropsychologia 6:215–234Google Scholar
  352. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM et al (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II Standardization of the neuropathologic assessment for Alzheimer’s disease. Neurology 41:479–486PubMedGoogle Scholar
  353. Mishkin M (1978) Memory in monkeys severely impaired by combined but not separate removal of amygdala and hippocampus. Nature 273:297–298PubMedGoogle Scholar
  354. Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond B 298:85–95Google Scholar
  355. Mizuno N, Takahashi O, Satoda T, Matsushima R (1985) Amygdaloid projections in the macaque monkey. Neurosci Lett 53:327–330PubMedGoogle Scholar
  356. Moore RY, Halaris AE (1975) Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J Comp Neurol 164:171–184PubMedGoogle Scholar
  357. Mori K (2016) Axonal projection of olfactory bulb tufted and mitral cells to olfactory cortex. In: Rockland KS (ed) Axons and brain architecture. Academic Press/Elsevier, San Diego, pp 3–26Google Scholar
  358. Morris JC (1993) The clinical dementia rating (CDR): current version and scoring rules. Neurology 43:2412–2414PubMedGoogle Scholar
  359. Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G et al (1989) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part I Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165PubMedGoogle Scholar
  360. Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815PubMedGoogle Scholar
  361. Moser EI, Witter MP, Moser M-B (2018) Entorhinal cortex. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits, 2nd edn. Oxford University Press, New York, pp 227–244Google Scholar
  362. Mouritzen Dam A (1982) Hippocampal neuron loss in epilepsy and after experimental seizures. Acta Neurol Scand 66:601–642Google Scholar
  363. Mueller SG, Stables L, Du AT, Schuff N, Truran D, Cashdollar N, Weiner MW (2007) Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiol Aging 28:719–726PubMedGoogle Scholar
  364. Mufson EJ, Mesulam M-M, Pandya DN (1981) Insular interconnections with the amygdala in the rhesus monkey. Neuroscience 6:1231–1248PubMedGoogle Scholar
  365. Murray EA, Mishkin M (1984) Severe tactual as well as visual memory deficits follow combined removal of the amygdala and hippocampus in monkeys. J Neurosci 4:2563–2580Google Scholar
  366. Murray EA, Mishkin M (1985) Amygdalectomy impairs crossmodal association in monkeys. Science 228:604–606PubMedGoogle Scholar
  367. Nakashima T, Kimmelman CP, Snow JB (1984) Structure of human fetal and adult olfactory neuroepithelium. Arch Otolaryngol (Chicago) 110:641–646Google Scholar
  368. Nakashima T, Kimmelman CP, Snow JB (1985) Vomeronasal organs and nerves of Jacobson in the human fetus. Acta Otolaryngol 99:266–271PubMedGoogle Scholar
  369. Nauta WJH (1958) Hippocampal projections and related neural pathways to the midbrain. Brain 81:319–340PubMedGoogle Scholar
  370. Nauta WJH (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat (Lond) 95:515–532Google Scholar
  371. Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ et al (2018) The amygdala as a locus of pathologic misfolding in neurodegenerative diseases. J Neuropathol Exp Neurol 77:2–20PubMedGoogle Scholar
  372. Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107:551–580PubMedGoogle Scholar
  373. Norgren R (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166:17–30PubMedGoogle Scholar
  374. Norita M, Kawamura K (1980) Subcortical afferents to the monkey amygdala: an HRP study. Brain Res 190:225–230PubMedGoogle Scholar
  375. Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt PJ (1995) Congenital malformations of the brain. Pathologic, embryologic, clinical, radiologic, and genetic aspects. Oxford University Press, New YorkGoogle Scholar
  376. Oelschläger HA, Buhl EH, Dann JF (1987) Development of the nervus terminalis in mammals including toothed whales and humans. Ann N Y Acad Sci 519:447–464PubMedGoogle Scholar
  377. Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64:209–217PubMedGoogle Scholar
  378. Ohnuma T, Kimura M, Takahashi T, Iwamoto N, Arai H (1997) A magnetic resonance imaging study in first-episode disorganized-type patients with schizophrenia. Psychiatry Clin Neurosci 51:9–15PubMedGoogle Scholar
  379. Ortmann R (1989) Über Sinneszellen am fetalen vomeronasalen Organ des Menschen. HNO 37:191–197PubMedGoogle Scholar
  380. Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL et al (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139:1551–1567PubMedPubMedCentralGoogle Scholar
  381. Ottersen OP (1982) Connections of the amygdala of the rat. IV. Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol 205:30–48PubMedGoogle Scholar
  382. Pandya DN, Van Hoesen GW, Domesick VB (1973) A cingulo-amygdaloid projection in the rhesus monkey. Brain Res 61:369–373PubMedGoogle Scholar
  383. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatr 42:725–743Google Scholar
  384. Parent JM (2007) Adult neurogenesis in the intact and epileptic dentate gyrus. Prog Brain Res 163:529–540PubMedGoogle Scholar
  385. Park SA, Hahn JH, Kim JI, Na DL, Huh K (2000) Memory deficits after bilateral anterior fornix infarction. Neurology 54:1379–1382PubMedGoogle Scholar
  386. Pasquier DA, Reinoso-Suarez F (1977) Differential efferent connections of the brain stem to the hippocampus in the cat. Brain Res 120:540–548PubMedGoogle Scholar
  387. Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci U S A 82:4531–4534PubMedPubMedCentralGoogle Scholar
  388. Penfield W, Mathieson G (1974) Memory: autopsy findings and comments on the role of hippocampus in experiential recall. Arch Neurol 31:145–154PubMedGoogle Scholar
  389. Penfield W, Milner B (1958) Memory deficit produced by bilateral lesions in the hippocampal zone. Arch Neurol Psychiatr 79:475–497Google Scholar
  390. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP et al (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310PubMedGoogle Scholar
  391. Pessoa L, Adolphs R (2010) Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance. Nat Rev Neurosci 11:773–782PubMedPubMedCentralGoogle Scholar
  392. Petrovich GD, Risold PY, Swanson LW (1996) Organization of projections from the basomedial nucleus of the amygdala: a PHA-L study in the rat. J Comp Neurol 374:387–420PubMedGoogle Scholar
  393. Phillips ML, Young AW, Senior C, Brammer M, Andrew C, Calder AJ et al (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389:495–498PubMedGoogle Scholar
  394. Phillips ML, Young AW, Scott SK, Calder J, Andrew C, Giampietro V (1998) Neural responses to facial and vocal expressions of fear and disgust. Proc Roy Soc Lond B 265:1809–1817Google Scholar
  395. Pick A (1892) Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochenschr 17:165–167Google Scholar
  396. Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 31–115Google Scholar
  397. Pitkänen A, Amaral DG (1991) Demonstration of projections from the lateral nucleus of the amygdala to the basal nucleus: a PHA-L study in the monkey. Exp Brain Res 83:465–470PubMedGoogle Scholar
  398. Pitkänen A, Stefanacci L, Farb C, Go C-G, LeDoux JE, Amaral DG (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 356:288–310PubMedGoogle Scholar
  399. Pitkänen A, Kelly JL, Amaral DG (2002) Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the entorhinal cortex in the macaque monkey. Hippocampus 12:186–205PubMedGoogle Scholar
  400. Powell TPS, Guillery RW, Cowan WM (1957) A quantitative study of the fornix-mamillothalamic system. J Anat (Lond) 91:419–437Google Scholar
  401. Powers RE (1999) The neuropathology of schizophrenia. J Neuropathol Exp Neurol 58:679–690PubMedGoogle Scholar
  402. Price JL (2004) Olfactory system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 1197–1211Google Scholar
  403. Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259PubMedPubMedCentralGoogle Scholar
  404. Price JL, Russchen FT, Amaral DG (1987) The limbic region. II. The amygdaloid complex. Handb Chem Neuroanat 5:279–388Google Scholar
  405. Price BH, Gurvit H, Weintraub S, Geula C, Leimkuhler E, Mesulam M-M (1993) Neuropsychological patterns and language deficits in 20 consecutive cases of autopsy-confirmed Alzheimer’s disease. Arch Neurol 50:931–937PubMedGoogle Scholar
  406. Pugliese L, Catani M, Ameis S, Dell’Acqua F, Theibaut de Schotten M, Murphy C et al (2009) The anatomy of extended limbic pathways in Asperger syndrome: a preliminary diffusion tensor imaging tractography study. NeuroImage 47:427–434PubMedGoogle Scholar
  407. Raedler TJ, Knable MB, Weinberger DR (1998) Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 8:157–161PubMedGoogle Scholar
  408. Raisman G, Cowan WM, Powell TPS (1966) An experimental analysis of the efferent projections of the hippocampus. Brain 89:83–108PubMedGoogle Scholar
  409. Ramón y Cajal S (1909–1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, ParisGoogle Scholar
  410. Rasmussen DX, Brandt J, Steele C, Hedreen JC, Troncoso JC, Folstein MF (1996) Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology. Alzheimer Dis Relat Disord 10:180–188Google Scholar
  411. Razi K, Greene KP, Sakuma M, Ge S, Kushner M, De Lisi LE (1999) Reduction of the parahippocampal gyrus and the hippocampus in patients with chronic schizophrenia. Br J Psychiatry 174:512–519PubMedGoogle Scholar
  412. Reas ET (2017) Amyloid and tau pathology in normal cognitive aging. J Neurosci 37:7561–7563PubMedPubMedCentralGoogle Scholar
  413. Rempel-Clower NL, Zola SM, Squire LR, Amaral DG (1996) Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J Neurosci 16:5233–5255PubMedPubMedCentralGoogle Scholar
  414. Retzius G (1896) Das Menschenhirn: Studien in der makroskopischen Morphologie. Norstedt, StockholmGoogle Scholar
  415. Roberts GW (1990) Schizophrenia: the cellular biology of a functional psychosis. Trends Neurosci 13:207–211PubMedGoogle Scholar
  416. Rolls ET (1992) Neurophysiology and functions of the primate amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 143–167Google Scholar
  417. Rolls ET (2000) Neurophysiology and functions of the primate amygdala, and the neural basis of emotion. In: Aggleton JP (ed) The amygdala. A functional analysis, 2nd edn. Oxford University Press, Oxford, pp 447–478Google Scholar
  418. Room P, Groenewegen HJ (1986) The connections of the parahippocampal cortex in the cat. II. Subcortical afferents. J Comp Neurol 251:451–473PubMedGoogle Scholar
  419. Room P, Groenewegen HJ, Lohman AHM (1984) Inputs from the olfactory bulb and olfactory cortex to the entorhinal cortex in the cat. Exp Brain Res 56:488–496PubMedGoogle Scholar
  420. Rose M (1927a) Die Allocortex bei Tier und Mensch. I Teil J Psychol Neurol (Lpz) 34:1–111Google Scholar
  421. Rose M (1927b) Die sog. Riechrinde beim Menschen und beim Affen. II. Teil des “Allocortex bei Tier und Mensch”. J Psychol Neurol (Lpz) 34:261–401Google Scholar
  422. Rose M (1935) Cytoarchitektonik und Myeloarchitektonik der Grosshirnrinde. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, Vol I: Allgemeine Neurologie I, Anatomie. Springer, Berlin/Heidelberg/New York, pp 588–778Google Scholar
  423. Rose J (1938) Zur normalen und pathologischen Architektonik der Ammonsformation. J Psychol Neurol (Lpz) 49:137–192Google Scholar
  424. Rose FC, Symonds CP (1960) Persistent memory deficit following encephalitis. Brain 83:195–212PubMedGoogle Scholar
  425. Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in rhesus monkey. Science 198:315–317PubMedGoogle Scholar
  426. Ross ED (2008) Sensory-specific amnesia and hypoemotionality in humans and monkeys: gateway for developing a hodology of memory. Cortex 44:1010–1022PubMedGoogle Scholar
  427. Rousseaux M (1994) Amnesias following limited thalamic infarctions. In: Delacourte J (ed) The memory system of the brain. World Scientific, Singapore, pp 241–277Google Scholar
  428. Rusinek H, De Santi S, Frid D, Tsui W-H, Tarshish CY, Convit A, de Leon MJ (2003) Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 229:691–696PubMedGoogle Scholar
  429. Russchen FT (1982a) Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques. J Comp Neurol 206:159–179PubMedGoogle Scholar
  430. Russchen FT (1982b) Ibid. II. Subcortical afferent connections. A study with retrograde tracing techniques. J Comp Neurol 207:157–176PubMedGoogle Scholar
  431. Russchen FT (1986) Cortical and subcortical afferents of the amygdaloid complex. In: Ben-Ari Y, Schwarcz R (eds) Excitatory amino acids and epilepsy. Plenum, New York, pp 35–52Google Scholar
  432. Russchen FT, Bakst I, Amaral DG, Price JL (1985a) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257PubMedGoogle Scholar
  433. Russchen FT, Amaral DG, Price JL (1985b) The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242:1–27PubMedGoogle Scholar
  434. Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210PubMedGoogle Scholar
  435. Sakamoto N, Pearson J, Shinoda K, Alheid GF (1999) The human basal forebrain, part 1. Handb Chem Neuroanat 15:1–55Google Scholar
  436. Sanides F (1957) Die Insulae terminales des erwachsenen Gehirns des Menschen. J Hirnforsch 3:243–273PubMedGoogle Scholar
  437. Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1095–1113Google Scholar
  438. Saper CB, Loewy AD, Swanson LW, Cowan WM (1976a) Direct hypothalamo-autonomic connections. Brain Res 117:305–312PubMedGoogle Scholar
  439. Saper CB, Swanson LW, Cowan WM (1976b) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442PubMedGoogle Scholar
  440. Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398PubMedPubMedCentralGoogle Scholar
  441. Saunders RC, Mishkin M, Aggleton JP (2005) Projections from the entorhinal cortex, perirhinal cortex, subiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1–16PubMedGoogle Scholar
  442. Savander V, Go C-G, LeDoux JE, Pitkänen A (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the basal nucleus. J Comp Neurol 361:345–368PubMedGoogle Scholar
  443. Savander V, Go C-G, LeDoux JE, Pitkänen A (1996) Intrinsic connections of the rat amygdaloid complex: projections originating in the accessory basal nucleus. J Comp Neurol 374:291–313PubMedGoogle Scholar
  444. Savic I (2002) Imaging of brain activation by odorants in humans. Curr Opin Neurobiol 12:455–461PubMedGoogle Scholar
  445. Scheltens P, Leys D, Barkhof F, Huglo D, Weinstein HC, Vermersch P et al (1992) Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal aging: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972PubMedPubMedCentralGoogle Scholar
  446. Schiller F (1992) Paul Broca. Founder of French anthropology, explorer of the brain. Oxford University Press, New YorkGoogle Scholar
  447. Schmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34:2264–2278PubMedGoogle Scholar
  448. Schuff N, Woerner N, Boreta L, Kornfeld T, Shaw LM, Trojanowski JQ et al (2009) MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 132:1067–1077PubMedPubMedCentralGoogle Scholar
  449. Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679PubMedPubMedCentralGoogle Scholar
  450. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH et al (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401PubMedPubMedCentralGoogle Scholar
  451. Schwanzel-Fukuda M, Pfaff DW (1989) Origin of luteinizing hormone releasing hormone neurons. Nature 338:161–164PubMedPubMedCentralGoogle Scholar
  452. Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone releasing hormone (LHRH) – expressing cells do not migrate in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 6:311–326Google Scholar
  453. Schwanzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PMG, Hardelin J-P, Petit C (1996) Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 366:547–557PubMedGoogle Scholar
  454. Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological staging. Brain 139:1539–1550PubMedGoogle Scholar
  455. Scoville WB (1954) The limbic lobe and memory in man. J Neurosurg 11:64–66PubMedGoogle Scholar
  456. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Psychiatry 20:11–21Google Scholar
  457. Seress L (2007) Comparative anatomy of the hippocampal dentate gyrus in adult and developing rodents, non-human primates and humans. Prog Brain Res 163:23–41PubMedGoogle Scholar
  458. Shenton ME, Kikinis R, Jolesz FA (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia: a quantitative magnetic resonance imaging study. N Engl J Med 327:604–612PubMedGoogle Scholar
  459. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophrenia Res 49:1–52Google Scholar
  460. Shepherd GM, Greer CA (1990) Olfactory bulb. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 133–169Google Scholar
  461. Shepherd TM, Özarslan E, Yachnis AT, King MA, Blackband SJ (2007) Diffusion tensor microscopy indicates the cytoarchitectural basis for diffusion anisotropy in the human hippocampus. AJNR Am J Neuroradiol 28:958–964PubMedGoogle Scholar
  462. Shipley MI, McLean JH, Ennis M (1995) Olfactory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 899–926Google Scholar
  463. Siegel A, Edinger H, Ohgami S (1974) The topographical organization of the hippocampal projection to the septal area: a comparative neuroanatomical analysis in the gerbil, rat, rabbit, and cat. J Comp Neurol 157:359–378PubMedGoogle Scholar
  464. Siegel A, Ohgami S, Edinger H (1975) Projections of the hippocampus to the septal area in the squirrel monkey. Brain Res 99:247–260PubMedGoogle Scholar
  465. Signoret J-L (1985) Memory and amnesias. In: Mesulam M-M (ed) Principles of behavioral neurology. Davis, Philadelphia, pp 169–192Google Scholar
  466. Šimić G, Mrzljak A, Fučić A, Winblad B, Lovrić H, Kostović I (1999) Nucleus subputaminalis (Ayala): the still disregarded magnocellular component of the basal forebrain may be human specific and connected with the cortical speech area. Neuroscience 89:73–89PubMedGoogle Scholar
  467. Simpson DA (1952) The efferent fibres of the hippocampus in the monkey. J Neurol Neurosurg Psychiatry 15:79–92PubMedPubMedCentralGoogle Scholar
  468. Sloviter RS (1994) The functional organization of the hippocampal dentate gyrus and its relevance to the pathogenesis of temporal lobe epilepsy. Ann Neurol 35:640–654PubMedGoogle Scholar
  469. Sloviter RS, Brisman JL (1995) Lateral inhibition and granule cell synchrony in the rat hippocampal dentate gyrus. J Neurosci 15:811–820PubMedPubMedCentralGoogle Scholar
  470. Solodkin A, Van Hoesen GW (1996) Entorhinal cortex modules of the human brain. J Comp Neurol 365:610–627PubMedGoogle Scholar
  471. Sommer W (1880) Erkrankung des Ammonshorn als aetiologisches Moment der Epilepsie. Arch Psychiatr Nervenkr 10:631–675Google Scholar
  472. Somogyi P (2010) Hippocampus: intrinsic organization. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits. Oxford University Press, New York, pp 146–164Google Scholar
  473. Somogyi P, Klausberger T (2018) Hippocampus: intrinsic organization. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits, 2nd edn. Oxford University Press, New York, pp 199–215Google Scholar
  474. Sørensen KE (1985) Projections of the entorhinal area to the striatum, nucleus accumbens, and cerebral cortex in the Guinea pig. J Comp Neurol 238:308–322PubMedGoogle Scholar
  475. Spaniol J, Davidson PS, Kim AS, Han H, Moscovitch M, Gracey CL (2009) Event-related fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47:1765–1779PubMedGoogle Scholar
  476. Sparks BF, Friedman SD, Shaw DW, Aylward EH, Echelard DS, Artru AA et al (2002) Brain structural abnormalities in young children with autism spectrum disorders. Neurology 59:184–192PubMedGoogle Scholar
  477. Speedie LJ, Heilman KM (1982) Amnestic disturbance following infarction of the left dorsomedial nucleus of the thalamus. Neuropsychologia 20:597–604PubMedGoogle Scholar
  478. Speedie LJ, Heilman KM (1983) Anterograde memory deficits for visuospatial material after infarction of the right thalamus. Arch Neurol 40:183–186PubMedGoogle Scholar
  479. Spielmeyer W (1927) Die Pathogenese des epileptischen Krampfes. Z Ges Neurol Psychiatr 109:501–520Google Scholar
  480. Spiers HJ, Maguire EA, Burgess N (2001) Hippocampal amnesia. Neurocase 7:357–382PubMedGoogle Scholar
  481. Squire LR (1987) Memory: neural organization and behavior. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Vol V: Higher functions of the brain. American Physiological Society, Bethesda, pp 295–371Google Scholar
  482. Squire LR, Bayley PJ (2007) The neuroscience of remote memory. Curr Opin Neurobiol 17:185–196PubMedPubMedCentralGoogle Scholar
  483. Squire LR, Moore RY (1979) Dorsal thalamic lesions in a noted case of human memory dysfunction. Ann Neurol 6:503–506PubMedGoogle Scholar
  484. Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory system. Science 253:1380–1386PubMedGoogle Scholar
  485. Squire LR, Amaral DG, Zola-Morgan S, Kritchevsky M, Press G (1989) Description of brain injury in the amnesic patient N.A. based on magnetic resonance imaging. Exp Neurol 105:23–35PubMedGoogle Scholar
  486. Stefanacci L, Amaral DG (2000) Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: a retrograde tracing study. J Comp Neurol 421:52–79PubMedGoogle Scholar
  487. Stephan H (1975) Allocortex. Handbuch der mikroskopischen Anatomie des Menschen, Vol 4, Teil 9. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  488. Stephan H, Andy OJ (1970) The allocortex in primates. In: Noback CR, Montagna W (eds) The primate brain. Appleton-Century-Crofts, New York, pp 109–135Google Scholar
  489. Stephan H, Andy OJ (1977) Quantitative comparison of the amygdala in insectivores and primates. Acta Anat (Basel) 98:130–153Google Scholar
  490. Stoub TR, deToledo-Morrell L, Stebbins GT, Leurgans S, Bennett DA, Shah R (2006) Hippocampal disconnection contributes to memory dysfunction in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 103:10041–10045PubMedPubMedCentralGoogle Scholar
  491. Sutula TP, Dudek FE (2007) Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog Brain Res 163:541–563PubMedGoogle Scholar
  492. Suzuki WA, Amaral DG (1994a) The perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533PubMedGoogle Scholar
  493. Suzuki WA, Amaral DG (1994b) Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 14:1856–1877PubMedPubMedCentralGoogle Scholar
  494. Suzuki WA, Amaral DG (2003a) The perirhinal and parahippocampal cortices of the macaque monkey: Cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463:67–91PubMedGoogle Scholar
  495. Suzuki WA, Amaral DG (2003b) Where are the perirhinal and parahippocampal cortices? A historical overview of the nomenclature and boundaries applied to the primate medial temporal lobe. Neuroscience 120:893–906PubMedGoogle Scholar
  496. Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353PubMedGoogle Scholar
  497. Swanson LW, Cowan WM (1975) Hippocampo-hypothalamic connection: origin in subicular cortex, not Ammon’s horn. Science 189:303–304PubMedGoogle Scholar
  498. Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84PubMedGoogle Scholar
  499. Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655PubMedGoogle Scholar
  500. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331PubMedGoogle Scholar
  501. Swanson LW, Sawchenko PE, Cowan WM (1981) Evidence for collateral projections by neurons in Ammon’s horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat. J Neurosci 1:548–559PubMedPubMedCentralGoogle Scholar
  502. Takagi SF (1986) Studies on the olfactory nervous system. Prog Neurobiol 27:195–250PubMedGoogle Scholar
  503. Talbot K, Arnold SE (2002) The parahippocampal region in schizophrenia. In: Witter M, Wouterlood F (eds) The Parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 297–320Google Scholar
  504. Tanaka Y, Miyazawa Y, Araoka F, Yamada T (1997) Amnesia following damage to the mammillary bodies. Neurology 4:160–165Google Scholar
  505. Teipel SJ, Pruessner JC, Faltraco F, Born C, Rocha-Unold M, Evans A et al (2006) Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 253:794–800PubMedGoogle Scholar
  506. ten Donkelaar HJ, Lammers GJ, Gribnau AAM (1979) Neurogenesis in the amygdaloid complex of a rodent (the Chinese hamster). Brain Res 165:348–353PubMedGoogle Scholar
  507. ten Donkelaar HJ, Lammens M, Cruysberg JRM, Hori A, Shiota K, Verbist B (2006) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology: development and developmental disorders of the human central nervous system. Springer, Berlin/Heidelberg/New York, pp 345–428Google Scholar
  508. ten Donkelaar HJ, Vermeij-Keers C, Lohman AHM (2007a) Hoofd en hals. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische anatomie en embryologie, 3rd edn. Elsevier, Maarssen, pp 545–727. (in Dutch)Google Scholar
  509. ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007b) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141. (in Dutch)Google Scholar
  510. ten Donkelaar HJ, Lammens M, Cruysberg JRM, Kamphuis-van Ulzen K, Hori A, Shiota K (2014) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical Neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg/New York/Dordrecht/London, pp 421–521Google Scholar
  511. ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155PubMedGoogle Scholar
  512. ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated terminologia neuroanatomica: a concise encyclopedia of human neuroanatomy. Springer, ChamGoogle Scholar
  513. ter Laak HJ, Renkawek K, van Workum FPA (1994) The olfactory bulb in Alzheimer disease: a morphologic study of neuron loss, tangles, and senile plaques in relation to olfaction. Alzheimer Dis Assoc Disord 8:38–48PubMedGoogle Scholar
  514. Teuber HL, Milner B, Vaughan HC (1968) Persistent anterograde amnesia after stab wound of the basal brain. Neuropsychologia 6:267–282Google Scholar
  515. Theysohn JM, Kraff O, Maderwald S, Schlamann MK, de Greiff A, Forsting M et al (2009) The human hippocampus at 7T-in vivo MRI. Hippocampus 19:1–7PubMedGoogle Scholar
  516. Thiebaut de Schotten M, Dell’Acqua F, Ratiu P, Leslie A, Howells H, Cabanis E et al (2015) From Phineas gage and Monsieur Leborgne to H.M.: revisiting disconnection syndromes. Cereb Cortex 25:4812–4827PubMedPubMedCentralGoogle Scholar
  517. Thom M, Griffin B, Sander JW, Scaravilli F (1999) Amygdala sclerosis in sudden and unexpected death in epilepsy. Epilepsy Res 37:53–62PubMedGoogle Scholar
  518. Thom M, Sisodya SM, Beckett A, Martinian L, Lin W-R, Harkness W et al (2002) Cytoarchitectural abnormalities in hippocampal sclerosis. J Neuropathol Exp Neurol 61:510–519PubMedGoogle Scholar
  519. Tigges J, Tigges M, Cross NA, McBride RL, Letbetter WD, Anschel S (1982) Subcortical structures projecting to visual cortical areas in squirrel monkey. J Comp Neurol 209:29–40PubMedGoogle Scholar
  520. Tigges J, Walker LC, Tigges M (1983) Subcortical projections to the occipital and parietal lobes of the chimpanzee brain. J Comp Neurol 220:106–115PubMedGoogle Scholar
  521. TNA (2017) Terminologia Neuroanatomica. Federative International Programme for Anatomical TerminologyGoogle Scholar
  522. Toledo JB, Xie SX, Trojanowski JQ, Shaw LM (2013) Longitudinal change in CSF tau and Abeta biomarkers for up to 48 months in ADNI. Acta Neuropathol (Berl) 126:659–670Google Scholar
  523. Tovote P, Fadok JP, Lüthi A (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16:317–331PubMedGoogle Scholar
  524. Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of memory. Academic, New York, pp 381–403Google Scholar
  525. Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8:198–204PubMedGoogle Scholar
  526. Turner BH, Gupta KC, Mishkin M (1978) The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. J Comp Neurol 177:381–396PubMedGoogle Scholar
  527. Turner BH, Mishkin M, Knapp M (1980) Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol 191:515–543PubMedGoogle Scholar
  528. Unger JW, Lapham LW, McNeill TH, Eskin TA, Hamill RW (1991) The amygdala in Alzheimer’s disease: neuropathology and Alz 50 immunoreactivity. Neurobiol Aging 12:389–399PubMedGoogle Scholar
  529. van de Pol LA, Hensel A, Barkhof F, Gertz HJ, Scheltens P, van der Flier WM (2006) Hippocampal atrophy in Alzheimer disease: age matters. Neurology 66:236–238PubMedGoogle Scholar
  530. van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W et al (2013) Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiat 70:783–792Google Scholar
  531. van den Heuvel MP, Scholtens LH, de Reus MA, Kahn RS (2015) Associated microscale spine density and macroscale connectivity disruptions in schizophrenia. Biol Psychiatry 80:293–301PubMedGoogle Scholar
  532. van der Werf YD (2000) The thalamus and memory. Contributions to medial temporal and prefrontal memory processes. Thesis, Free University, AmsterdamGoogle Scholar
  533. van der Werf YD, Witter MP, Uylings HBM, Jolles J (2000) Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38:613–627PubMedGoogle Scholar
  534. van der Werf YD, Scheltens P, Lindeboom J, Witter MP, Uylings HBM, Jolles J (2003) Deficits of memory, executive functioning and attention in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia 41:1330–1344PubMedGoogle Scholar
  535. Van Hoesen GW (1981) The differential distribution, diversity and sprouting of cortical projections to the amygdala in the rhesus monkey. In: Ben-Ari Y (ed) The amygdaloid complex. Elsevier/North Holland, Amsterdam, pp 77–90Google Scholar
  536. Van Hoesen GW (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345–350Google Scholar
  537. Van Hoesen GW (1995) Anatomy of the medial temporal lobe. Magn Reson Imaging 13:1047–1055PubMedGoogle Scholar
  538. Van Hoesen GW (2002) The human parahippocampal region in Alzheimer’s disease, dementia, and ageing. In: Witter M, Wouterlood F (eds) The Parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 271–295Google Scholar
  539. Van Hoesen GW, Damasio AR (1987) Neural correlates of cognitive impairment in Alzheimer’s disease. In: Plum F (ed) Handbook of physiology, sect 1: the nervous system, Vol V: Higher functions of the nervous system. American Physiological Society, Bethesda, pp 871–898Google Scholar
  540. Van Hoesen GW, Pandya DN (1975a) Some connections of the entorhinal (area 28) and perirhinal (ara 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24PubMedGoogle Scholar
  541. Van Hoesen GW, Pandya DN (1975b) Ibid. III. Efferent connections. Brain Res 95:39–59PubMedGoogle Scholar
  542. Van Hoesen GW, Pandya DN, Butters N (1975) Ibid. II. Frontal lobe afferents. Brain Res 95:25–38PubMedGoogle Scholar
  543. Van Paesschen W, Révész T (1998) Hippocampal sclerosis. In: Scaravilli F (ed) Neuropathology of epilepsy. World Scientific, Singapore, pp 501–572Google Scholar
  544. Van Paesschen W, Révész T, Duncan JS, King MD, Connelly A (1997) Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy. Ann Neurol 42:756–766PubMedGoogle Scholar
  545. Vann SD, Aggleton JP (2004) The mammillary bodies: two memory systems in one? Nat Rev Neurosci 5:35–44PubMedGoogle Scholar
  546. Varghese M, Keshaw N, Jacot-Descombes S, Warda T, Wicinski B, Dickson DL et al (2017) Autism spectrum disorders: neuropathology and animal models. Acta Neuropathol (Berl) 134:537–566Google Scholar
  547. Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 207:135–156PubMedGoogle Scholar
  548. Veening JG (1978a) Cortical afferents of the amygdaloid complex in the rat: an HRP study. Neurosci Lett 8:191–195PubMedGoogle Scholar
  549. Veening JG (1978b) Subcortical afferents of the amygdaloid complex in the rat. Neurosci Lett 8:197–202PubMedGoogle Scholar
  550. Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport and immunohistochemical study. Brain Res 303:337–357PubMedGoogle Scholar
  551. Vereecken THLG, Vogels OJM, Nieuwenhuys R (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 15:45–54PubMedGoogle Scholar
  552. Victor M, Adams RD, Collins GH (1971) The Wernicke-Korsakoff Syndrome. Davis, PhiladelphiaGoogle Scholar
  553. Vogels OJM, Broere CAJ, ter Laak HJ, ten Donkelaar HJ, Nieuwenhuys R, Schulte BPM (1990) Cell loss and shrinkage in the nucleus basalis of Meynert complex in Alzheimer’s disease. Neurobiol Aging 11:3–13PubMedGoogle Scholar
  554. Vogt O (1903) Zur anatomischen Gliederung des Cortex cerebri. J Psychol Neurol (Lpz) 2:160–180Google Scholar
  555. Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol (Lpz) 25:279–461Google Scholar
  556. Volpe BT, Hirst W (1983) The characterization of an amnesic syndrome following hypoxic ischemic injury. Arch Neurol 40:436–445PubMedGoogle Scholar
  557. Volsch M (1906) Zur vergleichenden Anatomie des Mandelkerns und seine Nachbargebilde, Teil I. Arch Mikrosk Anat 68:573–683Google Scholar
  558. Volsch M (1910) Zur vergleichenden Anatomie des Mandelkerns und seine Nachbargebilde, Teil II. Arch Mikrosk Anat 76:373–523Google Scholar
  559. von Bechterew W (1900) Demonstration eines Gehirns mit Zerstörung der vorderen und inneren Theile der Hirnrinde beider Schläfenlappen. Neurol Zbl 19:990–991Google Scholar
  560. von Cramon DY, Hebel N, Schuri U (1985) A contribution to the anatomical basis of thalamic amnesia. Brain 108:993–1008Google Scholar
  561. von Cramon DY, Markowitsch HJ, Schuri U (1993) The possible contribution of the septal region to memory. Neuropsychologia 31:1159–1180Google Scholar
  562. Voogd J, Nieuwenhuys R, van Dongen PAM, ten Donkelaar HJ (1998) Mammals. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 1637–2097Google Scholar
  563. Voorn P, Brady LS, Berendse HW, Richfield EK (1996) Densitometrical analysis of opioid receptor ligand binding in the human striatum. I: Distribution of μ opioid receptor defines shell and core of the ventral striatum. Neuroscience 75:777–792PubMedGoogle Scholar
  564. Wainer BH, Levey AI, Rye DB, Mesulam M-M (1985) Cholinergic and non-cholinergic septohippocampal pathways. Neurosci Lett 54:45–52PubMedGoogle Scholar
  565. Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenetic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251–260PubMedPubMedCentralGoogle Scholar
  566. Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49:381–391PubMedGoogle Scholar
  567. Wernicke C (1881) Die acute, hemorrhagische Polioencephalitis superior. In: Wernicke C (ed) Lehrbuch der Gehirnkrankheiten für Ärzte und Studierende. Band II. Fischer, Kassel/Berlin, pp 229–242Google Scholar
  568. Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126PubMedGoogle Scholar
  569. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, DeLong MR (1982) Alzheimer’s disease and senile dementias: loss of neurons in the basal forebrain. Science 215:1237–1239PubMedGoogle Scholar
  570. Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson’s disease. Ann Neurol 13:243–248PubMedGoogle Scholar
  571. Whitlock DG, Nauta WJH (1956) Subcortical projections from the temporal neocortex in Macaca mulatta. J Comp Neurol 106:183–212PubMedGoogle Scholar
  572. Williams M, Pennybacker J (1954) Memory disturbances in third ventricle tumours. J Neurol Neurosurg Psychiatry 17:115–123PubMedPubMedCentralGoogle Scholar
  573. Willsey AJ, State MW (2015) Autism spectrum disorders: from genes to neurobiology. Curr Opin Neurobiol 30:92–99PubMedGoogle Scholar
  574. Wilson CL, Isokawa M, Babb TL, Crandall PH (1990) Functional connections in the human temporal lobe. I. Analysis of limbic system pathways using neuronal responses evoked by electrical stimulation. Exp Brain Res 82:279–292PubMedGoogle Scholar
  575. Wilson CL, Isokawa M, Babb TL, Crandall PH, Levesque MF, Engel J (1991) Ibid. II. Evidence for a loss of functional linkage between contralateral limbic structures. Exp Brain Res 85:174–187PubMedGoogle Scholar
  576. Winocur G, Oxbury S, Roberts R, Agnetti V, Davis C (1984) Amnesia in a patient with bilateral lesions to the thalamus. Neuropsychologia 22:123–143PubMedGoogle Scholar
  577. Winterer G, Weinberger DR (2004) Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 27:683–690PubMedGoogle Scholar
  578. Witter M (2002) The parahippocampal region: past, present and future. In: Witter M, Wouterlood F (eds) The Parahippocampal region: organization and role in cognitive function. Oxford University Press, Oxford, pp 3–19Google Scholar
  579. Witter MP (2007) The perforant path: projections from the entorhinal cortex to the dentate gyrus. Prog Brain Res 163:43–61PubMedGoogle Scholar
  580. Witter M, Amaral DG (1991) Entorhinal cortex of the monkey. V. Projections to the dentate gyrus, hippocampus and subicular complex. J Comp Neurol 307:437–459PubMedGoogle Scholar
  581. Witter M, Groenewegen HJ (1984) Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J Comp Neurol 224:371–385PubMedGoogle Scholar
  582. Witter M, Groenewegen HJ (1986) The connections of the parahippocampal cortex in the cat. IV. Subcortical efferents. J Comp Neurol 252:51–77PubMedGoogle Scholar
  583. Witter M, Van Hoesen GW, Amaral DG (1989) Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 9:216–228PubMedPubMedCentralGoogle Scholar
  584. Wolf HK, Aliashkevich AF, Blümcke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy. A quantitative analysis of 70 surgical specimens. Acta Neuropathol (Berl) 93:606–610Google Scholar
  585. Woolf NJ, Butcher LL (1982) Cholinergic projections to the basolateral amygdala: a combined Evans Blue and acetylcholinesterase analysis. Brain Res Bull 8:751–763PubMedGoogle Scholar
  586. Wray S, Nieburgs A, Elkabes S (1989a) Spatiotemporal cell expression of luteinizing hormone releasing hormone in the prenatal mouse: evidence for an embryonic origin in the olfactory pit. Dev Brain Res 46:309–318Google Scholar
  587. Wray S, Grant P, Gainer H (1989b) Evidence that cells expressing luteinizing hormone releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci U S A 86:8132–8136PubMedPubMedCentralGoogle Scholar
  588. Yakovlev PI (1948) Motility, behavior, and the brain. J Nerv Ment Dis 107:313–335PubMedGoogle Scholar
  589. Yakovlev PI (1972) A proposed definition of the limbic system. In: Hockman CH (ed) Limbic system mechanisms and autonomic function. Thomas, Springfield, pp 241–283Google Scholar
  590. Yamamoto T, Hirano A (1985) Nucleus raphe dorsalis in Alzheimer’s disease : neurofibrillary tangles and loss of large neurons. Ann Neurol 17:573–577PubMedGoogle Scholar
  591. Yilmazer-Hanke DM (2012) Amygdala. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 759–784Google Scholar
  592. Young AW, Aggleton JG, Hellawell DJ, Johnson M, Broks P, Hanley JR (1995) Face processing impairments after amygdalotomy. Brain 118:15–24PubMedGoogle Scholar
  593. Yukie M (2000) Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 423:282–298PubMedGoogle Scholar
  594. Yukie M (2002) Connections between the amygdala and auditory cortical areas in the macaque monkey. Neurosci Res 42:219–229PubMedGoogle Scholar
  595. Zaborsky L, Gombkoto P (2018) The cholinergic multicompartmental basal forebrain microcircuit. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits, 2nd edn. Oxford University Press, New York, pp 163–183Google Scholar
  596. Záborsky L, Heimer L (1984) Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells in the rostral forebrain. Neurosci Lett 52:219–225Google Scholar
  597. Zald DH, Pardo JV (1997) Emotion, olfaction, and the human amygdala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci U S A 94:4119–4124PubMedPubMedCentralGoogle Scholar
  598. Zald DH, Lee JT, Fluegel KW, Pardo JV (1998) Aversive gustatory stimulation activates limbic circuits in humans. Brain 121:1143–1154PubMedGoogle Scholar
  599. Zeineh MM, Palomero-Gallagher N, Axer M, Gräβel D, Goubran M, Wree A et al (2017) Direct visualization and mapping of the spatial course of fibre tracts at microscopic resolution in the human hippocampus. Cereb Cortex 27:1779–1794PubMedGoogle Scholar
  600. Zhao Q, Liu M, Zhou Y, Alzheimer’s Disease Neuroimaging Initiative (2019) Quantitative 18F-AV1451 brain tau PET imaging in cognitive normal older adults, mild cognitive impairment, and Alzheimer’s disease patients. Front Neurol 10:486PubMedPubMedCentralGoogle Scholar
  601. Zilles K (1990) Architecture of the human cerebral cortex. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 757–802Google Scholar
  602. Zilles K (2004) Architecture of the human cerebral cortex. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 997–1005Google Scholar
  603. Zilles K, Amunts K (2012) Architecture of the human cerebral cortex. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 836–895Google Scholar
  604. Zola-Morgan S, Squire LR (1984) Preserved learning in monkeys with medial temporal lesions: sparing of motor and cognitive skills. J Neurosci 4:1072–1085PubMedPubMedCentralGoogle Scholar
  605. Zola-Morgan S, Squire L (1985) Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus. Ann Neurol 17:558–564PubMedGoogle Scholar
  606. Zola-Morgan S, Squire L, Mishkin M (1982) The neuroanatomy of amnesia: Amygdalo-hippocampus versus temporal stem. Science 218:1337–1339PubMedGoogle Scholar
  607. Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.935 Department of NeurologyRadboud University Medical Centre and Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
  2. 2.Department of Anatomy, Faculty of MedicineUniversidad Castilla - La ManchaAlbaceteSpain
  3. 3.Department of NeurologyZuyderland Medical CentreSittard-GeleenThe Netherlands
  4. 4.824 Department of PathologyRadboud University Medical CentreNijmegenThe Netherlands
  5. 5.Research Institute for Longevity Medicine, Fukushimura HospitalToyohashiJapan
  6. 6.Department of NeuropathologyMedizinische HochschuleHannoverGermany

Personalised recommendations