The Hypothalamus, the Preoptic Area, and Hypothalamohypophysial Systems

  • Hans J. ten DonkelaarEmail author
  • Akira Hori


The rather small hypothalamus and preoptic area contain a large number of more or less well-defined cell groups that are of utmost importance for preserving the individual and the species. From a developmental point of view, the hypothalamus and preoptic area have different origins but, despite ontogenetical differences, the hypothalamus and preoptic area are usually seen as a continuum. The hypothalamus is involved in a wide variety of functions in the brain and is characterized by numerous connections with practically every major part of the central nervous system (CNS), including the cerebral cortex, the hippocampus, the amygdala, the thalamus, the cerebellum, the brain stem and the spinal cord. Alterations in hypothalamic nuclei are found in various endocrine diseases such as diabetes insipidus and Wolfram and Prader-Willi syndromes and in various neurodegenerative diseases such as Alzheimer, Parkinson and Huntington diseases.

Through its intimate neuronal and vascular relationships with the pituitary gland, the hypothalamus controls the release of the pituitary hormones, thereby bringing the entire endocrine system under the control of the CNS. The magnocellular secretory system, composed of supraoptic and paraventricular neurons, gives rise to axons that innervate the posterior lobe of the pituitary via the tuberohypophysial tract. All other hypothalamic control of pituitary function is achieved through neurohumoral mechanisms via the portal plexus in the external zone of the median eminence. Neurosecretory neurons throughout the hypothalamus, more in particular the arcuate nucleus, project to the median eminence. This parvocellular secretory system controls the anterior pituitary.

The hypothalamus is concerned with generalized response patterns that often involve autonomic, somatomotor and endocrine systems. Following a brief description of the development of the hypothalamus and preoptic area (► Sect. 13.2), their boundaries and subdivision (► Sect. 13.3), their fibre connections with the CNS (► Sect. 13.4) and with the hypophysis (► Sect. 13.5) and aspects of the functional organization of the hypothalamus such as the control of feeding, reproduction, thermoregulation and sleep (► Sect. 13.6) will be discussed. Damage to different parts of the hypothalamohypophysial system may result in various neuroendocrine disturbances. Autonomic dysfunctions in the respiratory, cardiovascular and gastrointestinal systems are commonly seen, as are disturbances in temperature regulation, water balance, sexual behaviour and food intake. Some examples are presented as Clinical cases. The English terms of the Terminologia Neuroanatomica are used throughout.


  1. Akert K, Potter HD, Anderson JW (1961) The subfornical organ in mammals. J Comp Neurol 116:1–14PubMedGoogle Scholar
  2. Allen LS, Hines M, Shryne JE, Gorski RA (1989) Two sexually dimorphic cell groups in the human brain. J Neurosci 9:497–506PubMedPubMedCentralGoogle Scholar
  3. Altman J, Bayer SA (1986) The development of the rat hypothalamus. Adv Anat Embryol Cell Biol 100:1–178Google Scholar
  4. Anderson JW, Washburn DLS, Ferguson AV (2000) Intrinsic osmosensitivity of osmosensitivity of subfornical organ neurons. Neuroscience 100:539–547PubMedGoogle Scholar
  5. Angevine JB Jr (1970) Time of neuron origin in the diencephalon of the mouse. An autoradiographic study. J Comp Neurol 139:129–188PubMedGoogle Scholar
  6. Arendash GW, Gorski RA (1983) Effects of discrete lesions of the sexually dimorphic nucleus of the preoptic area or other medial preoptic regions on the sexual behavior of male rats. Brain Res Bull 10:147–154PubMedGoogle Scholar
  7. Ariëns Kappers J (1965) Survey of the innervation of the epiphysis cerebri and the accessory pineal gland organ of vertebrates. Prog Brain Res 10:87–151Google Scholar
  8. Asa SL, Kovacs K, Laszlo FA, Domokos I, Ezrin C (1986) Human fetal adenohypophysis. Histologic and immunohistochemical analysis. Neuroendocrinology 43:308–316PubMedGoogle Scholar
  9. Asa SL, Kovacs K, Horvath E, Losinski NE, Laszlo FA, Domokos I, Halliday WC (1988) Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 48:423–431PubMedGoogle Scholar
  10. Auo S, Oomura Y, Yoshimatsu H (1988) Neuron activity of the ventromedial hypothalamus and the medial preoptic area of the female monkey during sexual behavior. Brain Res 455:65–71Google Scholar
  11. Bahnsen U, Oosting P, Swaab DF, Nahke P, Richter D, Schmale H (1992) A missense mutation in the vasopressin-neurophysin precursor gene congregates with human autosomal dominant neurohypophyseal diabetes insipidus. EMBO J 11:19–23PubMedPubMedCentralGoogle Scholar
  12. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17:305–311PubMedGoogle Scholar
  13. Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Phys 84:490–515Google Scholar
  14. Bard P (1929) The central representation of the sympathetic nervous system as indicated by certain physiologic observations. Arch Neurol Psychiatr 22:230–246Google Scholar
  15. Bargmann W (1949) Über die neurosekretorische Verknüpfung von Hypothalamus and Neurohypophyse. Z Zellforsch 34:610–634PubMedGoogle Scholar
  16. Barry J (1977) Immunofluorescence study of LRF neurons in man. Cell Tissue Res 181:1–14PubMedGoogle Scholar
  17. Beitz AJ (1982) The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience 7:133–159PubMedGoogle Scholar
  18. Bergeron C, Kovacs K, Ezrin C, Mizzen C (1991) Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol (Berl) 81:345–348Google Scholar
  19. Bloch B, Gaillard RG, Brazeau P, Lin HD, Ling N (1984) Topographical and ontogenetic study of the neurons producing growth hormone-releasing factor in human hypothalamus. Regul Peptides 8:21–31Google Scholar
  20. Bouras C, Magistretti PJ, Morrison JH, Constantinidis J (1987) An immunohistochemical study of pro-somatostatin-derived peptides in the human brain. Neuroscience 22:781–800PubMedGoogle Scholar
  21. Bourque CW (2008) Central mechanisms of osmosensation and systemic osmoreception. Nat Rev Neurosci 9:519–531PubMedGoogle Scholar
  22. Braak H, Braak E (1987) The hypothalamus of the human adult: Chiasmatic region. Anat Embryol (Berl) 176:315–330Google Scholar
  23. Braak H, Braak E (1992) Anatomy of the human hypothalamus (chiasmatic and tuberal regions). Prog Brain Res 93:3–16PubMedGoogle Scholar
  24. Breverman LE, Mancini JP, McGoldrick DM (1965) Hereditary idiopathic diabetes insipidus. A case report with autopsy findings. Ann Int Med 63:503–508Google Scholar
  25. Broadwell RD, Brightman MW (1976) Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J Comp Neurol 166:257–283PubMedGoogle Scholar
  26. Broberger C (1999) Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: Histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res 848:101–113PubMedGoogle Scholar
  27. Brockhaus H (1942) Beitrag zur normalen Anatomie des Hypothalamus und der Zona incerta beim Menschen. J Psychol Neurol (Lpz) 51:96–196Google Scholar
  28. Brunetti M, Babiloni C, Ferretti A, Del Grafta C, Merla A, Olivetti Belardelli M, Romani GL (2008) Hypothalamus, sexual arousal and psychosexual identity in human males: a functional magnetic imaging study. Eur J Neurosci 27:2922–2927PubMedGoogle Scholar
  29. Buijs RM, Swaab DF, Dogterom J, van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186:423–433PubMedGoogle Scholar
  30. Burstein R (1996) Somatosensory and visceral input to the hypothalamus and limbic system. Prog Brain Res 107:257–267PubMedGoogle Scholar
  31. Burstein R, Cliffer KD, Giesler GJ Jr (1987) Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J Neurosci 7:4159–4164PubMedPubMedCentralGoogle Scholar
  32. Burstein R, Falkowsky O, Borsook D, Strassman A (1996) Distinct lateral and medial projections of the spinohypothalamic tract of the cat. J Comp Neurol 373:549–574PubMedGoogle Scholar
  33. Camacho A, Phillips MI (1981) Horseradish peroxidase study in the rat of the neural connections of the organum vasculosum of the lamina terminalis. Neurosci Lett 25:201–204PubMedGoogle Scholar
  34. Canteras NS, Simerly RB, Swanson LW (1994) Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:41–79PubMedGoogle Scholar
  35. Carson MJ, Slager UT, Steinberg RM (1977) Simultaneous occurrence of diabetes mellitus, diabetes insipidus, and optic atrophy in a brother and sister. Am J Dis Child 131:1382–1385PubMedGoogle Scholar
  36. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451PubMedGoogle Scholar
  37. Chen XM, Hosono T, Yoda T, Fukuda Y, Kanosue K (1998) Efferent projection from the preoptic area for the control of non-shivering thermogenesis in rats. J Physiol Lond 512:883–892PubMedPubMedCentralGoogle Scholar
  38. Ciriello J (2013) Caudal ventrolateral medulla mediates baroreceptor afferent inputs to subfornical organ angiotensin II responsive neurons. Brain Res 1491:127–135PubMedGoogle Scholar
  39. Ciriello J, Calaresu FR (1980a) Autoradiographic study of ascending projections from cardiovascular sites in the nucleus tractus solitarii in the rat. Brain Res 180:448–453Google Scholar
  40. Ciriello J, Calaresu FR (1980b) Monosynaptic pathway from cardiovascular neurons in the nucleus tractus solitarii in the rat. Brain Res 193:529–533PubMedGoogle Scholar
  41. Ciriello J, Caverson MM (1984) Direct pathway from neurons in the ventrolateral medulla relaying cardiovascular afferent information to the supraoptic nucleus in the cat. Brain Res 292:221–228PubMedGoogle Scholar
  42. Cohen RA, Albers HE (1991) Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: a case study. Neurology 41:726–729PubMedGoogle Scholar
  43. Coolen LJMM (1995) The neural organization of sexual behavior in the male rat. Thesis, University of NijmegenGoogle Scholar
  44. Cowan WM, Guillery RW, Powell TPS (1964) The origin of the mammillary peduncle and other hypothalamic connexions from the midbrain. J Anat (Lond) 98:345–363Google Scholar
  45. Cremers CWRJ, Wijdeveld PGAB, Pinckers AJLG (1977) Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram syndrome). Acta Paediatr Scand Suppl 246:3–16Google Scholar
  46. Crompton MR (1963) Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain 86:301–314PubMedGoogle Scholar
  47. Crosby EC, Woodburne RT (1940) The comparative anatomy of the preoptic area and the hypothalamus. Proc Assoc Res Nerv Ment Dis 20:52–169Google Scholar
  48. Cruce JAF (1977) An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol 176:631–644PubMedGoogle Scholar
  49. Dai J, van der Vliet J, Swaab DF, Buijs RM (1998) Human retinohypothalamic tract as revealed by in vitro postmortem tracing. J Comp Neurol 397:357–370PubMedGoogle Scholar
  50. Daniel PM, Pritchard MML (1975) Studies of the hypothalamus and the pituitary gland with special reference to the effects of the pituitary stalk. Acta Endocrinol (Copenhagen) 80(Suppl 201):1–210Google Scholar
  51. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475PubMedGoogle Scholar
  52. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327PubMedPubMedCentralGoogle Scholar
  53. de Olmos J, Ingram WR (1972) The projection fields of the stria terminalis in the rat brain. An experimental study. J Comp Neurol 146:303–334PubMedGoogle Scholar
  54. Dierickx K, Vandesande F (1977) Immunocytochemical localization of the vasopressinergic and oxytocinergic neurons in the human hypothalamus. Cell Tissue Res 184:15–27PubMedGoogle Scholar
  55. Dierickx K, Vandesande F (1979) Immunocytochemical demonstration of separate vasopressin-neurophysin and oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res 196:203–212PubMedGoogle Scholar
  56. Dietrichs E, Haines DE (1989) Interconnections between hypothalamus and cerebellum. Anat Embryol (Berl) 179:207–220Google Scholar
  57. Dietrichs E, Wiklund L, Haines DE (1992) The hypothalamocerebellar projection in the rat: origin and transmitter. Arch Ital Biol 130:203–211PubMedGoogle Scholar
  58. Dudas B, Mihaly A, Merchenthaler I (2000) Topography and associations of luteinizing hormone-releasing hormone and neuropeptide Y-immunoreactive neuronal systems in the human diencephalon. J Comp Neurol 427:593–603PubMedGoogle Scholar
  59. Duvernoy H (1972) The vascular architecture of the median eminence. In: Knigge KM, Scott DE, Weindle A (eds) Brain endocrine interaction. Karger, Basel, pp 79–108Google Scholar
  60. Duvernoy H, Koritké JG (1969) Concerning the relationships of the circumventricular organs and their vessels with the cavity of the ventricles. In: Sterba G (ed) Zirkumventriculäre Organe and Liquor. Fischer, Jena, pp 113–115Google Scholar
  61. Duvernoy H, Koritké JG, Monnier G (1969) Sur la vascularisation de la lame terminale humaine. Z Zellforsch Mikrosk Anat 102:49–77PubMedGoogle Scholar
  62. Duvernoy H, Parratte B, Tatu L, Vuillier F (2000) The human pineal gland: relationships with surrounding structures and blood supply. Neurol Res 22:747–790PubMedGoogle Scholar
  63. Elias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J et al (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402:442–459PubMedGoogle Scholar
  64. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C et al (1999) Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23:775–786Google Scholar
  65. Elias CF, Kelly JF, Lee CE, Ahima RS, Drucker DJ, Saper CB et al (2000) Chemical characterization of leptin-activated neurons in the rat brain. J Comp Neurol 423:261–281PubMedGoogle Scholar
  66. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB (1998) Distribution of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 395:535–547PubMedGoogle Scholar
  67. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232PubMedGoogle Scholar
  68. Estabrooke IV, McCarthy MT, Ko E, Chou TC, Chemelli RM, Yanagisawa M et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662PubMedPubMedCentralGoogle Scholar
  69. Felix D, Akert K (1974) The effect of angiotensin II on neurones of the cat subfornical organ. Brain Res 76:350–353PubMedGoogle Scholar
  70. Férnandez-Guasti A, Kruijver FPM, Fodor M, Swaab DF (2000) Sex differences in the distribution of androgen receptors in the human hypothalamus. J Comp Neurol 425:422–435PubMedGoogle Scholar
  71. Ferretti A, Caulo M, Del Gratta C, Di Matteo R, Merla A, Montorsi F et al (2005) Dynamics of male sexual arousal: distinct components of brain activation revealed by fMRI. NeuroImage 26:1086–1096PubMedGoogle Scholar
  72. Fitzsimons JT (1998) Angiotensin, thirst, and sodium appetite. Physiol Rev 78:583–686PubMedGoogle Scholar
  73. Fliers E, Swaab DF, Pool CW, Verwer RWH (1985) The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus: changes with aging and in senile dementia. Brain Res 342:45–53PubMedGoogle Scholar
  74. Fliers E, Noppen NWAM, Wiersinga WM, Visser TJ, Swaab DF (1994) Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibres in the human hypothalamus. J Comp Neurol 350:311–323PubMedGoogle Scholar
  75. Fröhlich A (1901) Ein Fall von Tumor der Hypophysis cerebri ohne Akromegalie. Wien Klin Wochenschr 15:883Google Scholar
  76. Fry FJ, Cowan WM (1972) A study of retrograde cell degeneration in the lateral mammillary nucleus of the cat, with special reference to the role of axonal branching in the preservation of the cell. J Comp Neurol 144:1–24PubMedGoogle Scholar
  77. Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259Google Scholar
  78. Gabreëls BATF (1998) Vasopressin secretion disorders in diabetes insipidus, Prader-Willi syndrome and Wolfram syndrome. Thesis, University of AmsterdamGoogle Scholar
  79. Gabreëls B, Swaab D, de Kleijn D, Dean A, Seidah N, van de Loo J-W et al (1998) The vasopressin precursor is not processed in the hypothalamus of Wolfram syndrome patients with diabetes insipidus: evidence for the involvement of PC2 and JB2. J Clin Endocrinol Metab 83:4026–4033PubMedGoogle Scholar
  80. Gagel O (1928) Zur Topik und feineren Histologie der vegetativen Kerne des Zwischenhirns. Z Anat Entwicklungsgesch 87:558–584Google Scholar
  81. Gebarski SS (1993) Pituitary gland imaging: the last bottle of iodinated contrast material. Radiology 189:29–30PubMedGoogle Scholar
  82. Gebke E, Müler AR, Kurzak M, Gerstberger R (1998) Angiotensin II-induced calcium signalling in neurons and astrocytes of rat circumventricular organs. Neuroscience 85:509–520PubMedGoogle Scholar
  83. Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116:225–235Google Scholar
  84. German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21:305–312PubMedGoogle Scholar
  85. Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346PubMedGoogle Scholar
  86. Griffin JD, Boulant JA (1995) Temperature effects on membrane potential and input resistance in rat hypothalamic neurones. J Physiol Lond 488:407–418PubMedPubMedCentralGoogle Scholar
  87. Grünthal EC (1933) Über das spezifisch Menschliche im Hypothalamusbau. Eine vergleichende Untersuchung des Hypothalamus beim Schimpansen und Menschen. J Psychol Neurol (Lpz) 45:237–263Google Scholar
  88. Gurdjian ES (1927) The diencephalon of the albino rat. J Comp Neurol 43:1–114Google Scholar
  89. Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130PubMedGoogle Scholar
  90. Haglund L, Swanson LW, Köhler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229:171–185PubMedGoogle Scholar
  91. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546PubMedGoogle Scholar
  92. Haymaker W (1969) Hypothalamo-pituitary neural pathways and the circulatory system of the pituitary. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 219–251Google Scholar
  93. Heimer L (1995) The human brain and spinal cord. functional neuroanatomy and dissection guide. Springer, New YorkGoogle Scholar
  94. Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat: a horseradish peroxidase study, with a note on the fibers-of-passage problem. J Comp Neurol 173:123–146PubMedGoogle Scholar
  95. Herkenham M, Nauta WJH (1979) Efferent connections of the habenular nuclei. J Comp Neurol 187:19–48PubMedGoogle Scholar
  96. Hess WR (1936) Hypothalamus und die Zentren des autonomen Nervensystems: Physiologie. Arch Psychiatr Nervenkr 104:548–557Google Scholar
  97. Hess WR, Brügger M (1943) Das subkortikale Zentrum der affektiven Abwehrreaktion. Helv Physiol Acta 1:33–52Google Scholar
  98. Hetherington AW, Ranson SW (1942) The relation of various hypothalamic lesions to adiposity in the rat. J Comp Neurol 76:475–499Google Scholar
  99. His W (1893) Vorschläge zur Eintheilung des Gehirns. Arch Anat Physiol Anat Abt 17:172–179Google Scholar
  100. Holstege G (1987) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126PubMedGoogle Scholar
  101. Holstege G, Georgiadis JR (2003) Neurobiology of cat and human sexual behavior. Int Rev Neurobiol 56:213–225PubMedGoogle Scholar
  102. Holstege G, Georgiadis JR (2004) The emotional brain: neural correlates of cat sexual behavior and human male ejaculation. Prog Brain Res 57:145–175Google Scholar
  103. Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391PubMedGoogle Scholar
  104. Hori T, Kiyohara T, Oomura Y, Nishino H, Aou S, Fujita I (1987) Activity of thermosensitive neurons of monkey preoptic hypothalamus during thermoregulatory operant behavior. Brain Res Bull 18:649–655PubMedGoogle Scholar
  105. Hori A, Schmidt D, Feyerabend B (1995) Pharyngosellar pituitary: a rare developmental anomaly of the pituitary gland. Acta Neuropathol (Berl) 89:459–463Google Scholar
  106. Hori A, Schmidt D, Rickels E (1999a) Pharyngeal pituitary: development, malformation and tumorigenesis. Acta Neuropathol (Berl) 98:262–272Google Scholar
  107. Hori A, Schmidt D, Kuebber S (1999b) Immunohistochemical survey of migration of human anterior pituitary cells in developmental, pathological, and clinical aspects: a review. Micr Res Techn 46:59–68Google Scholar
  108. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LRG et al (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88:131–141Google Scholar
  109. Ikeda H, Suzuki J, Sasano N, Niizumi H (1988) The development of morphogenesis of the human pituitary gland. Acta Neuropathol (Berl) 178:327–336Google Scholar
  110. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E et al (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20:143–148PubMedGoogle Scholar
  111. Irle E, Markowitsch HJ (1982) Connections of the hippocampal formation, mammillary bodies, anterior thalamus and cingulate cortex. Exp Brain Res 47:79–94PubMedGoogle Scholar
  112. Jones EG (2011) Mamillary or mammillary? What’s in an “m”? J Hist Neurosci 20:152–159PubMedGoogle Scholar
  113. Jones EG, Burton H, Saper CB, Swanson LW (1976) Midbrain, diencephalic and cortical relationships of the basal nucleus of Meynert and associated structures in primates. J Comp Neurol 167:385–420PubMedGoogle Scholar
  114. Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to the frontal and parietal cortex of the rhesus monkey. Science 187:660–662PubMedGoogle Scholar
  115. Koutcherov Y, Mai JK, Ashwell KWS, Paxinos G (2002) Organization of human hypothalamus in fetal development. J Comp Neurol 446:301–324Google Scholar
  116. Kow LM, Pfaff DW (1998) Mapping of neural and signal transduction pathways for lordosis in the search for estrogen actions on the central nervous system. Behav Brain Res 92:169–180PubMedGoogle Scholar
  117. Kremer HPH, Roos RAC, Dingjan G, Marani E, Bots GTAM (1990) Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease. J Neuropathol Exp Neurol 49:371–382PubMedGoogle Scholar
  118. Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brain stem in the rat and cat. J Comp Neurol 178:225–253PubMedGoogle Scholar
  119. Krieg WJS (1932) The hypothalamus of the albino rat. J Comp Neurol 55:19–89Google Scholar
  120. Krieger MS, Conrad LCA, Pfaff DW (1979) An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol 183:785–816PubMedGoogle Scholar
  121. Lammers HJ (1972) The neural connections of the amygdaloid complex in mammals. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 123–144Google Scholar
  122. Le Gros Clark WE (1936) The topography and homologies of the hypothalamic nuclei in man. J Anat (Lond) 70:203–216Google Scholar
  123. Le Gros Clark WE (1938) Morphological aspects of the hypothalamus. In: Le Gros Clark WE, Beattie J, Riddoch G, Dott NM (eds) The hypothalamus. Morphological, functional, clinical and surgical aspects. Oliver and Boyd, Edinburgh, pp 1–68Google Scholar
  124. Leib DE, Zimmerman CA, Knight ZA (2016) Thirst. Curr Biol:R1260–R1265Google Scholar
  125. Lim ASP, Ellison BA, Wang JL, Yu L, Schneider JA, Buchman AR et al (2014) Sleep is related to neuron numbers in the ventrolateral preoptic/intermediate nucleus in older adults with and without Alzheimer’s disease. Brain 137:2847–2861PubMedPubMedCentralGoogle Scholar
  126. Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminegic neurons. Sleep Med Rev 4:471–503PubMedGoogle Scholar
  127. Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of the cat. Neuropharmacology 27:111–132PubMedGoogle Scholar
  128. Lin JS, Sakai K, Jouvet M (1994) Hypothalamo-preoptic histaminergic projections in sleep-wake control in the cat. Eur J Neurosci 6:618–625PubMedGoogle Scholar
  129. Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role of cortical activation and wakefulness in the cat. J Neurosci 16:1523–1537PubMedPubMedCentralGoogle Scholar
  130. Lind RW, Van Hoesen GW, Johnson AK (1982) An HRP study of the connections of the subfornical organ of the rat. J Comp Neurol 210:265–277PubMedGoogle Scholar
  131. Lloyd SA, Dixson AF (1988) Effects of hypothalamic lesions upon the sexual and social behaviour of the male common marmoset (Callithrix jacchus). Brain Res 463:317–329PubMedGoogle Scholar
  132. Luiten PGM, ter Horst GJ, Karst H, Steffens AB (1985) The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 329:374–378PubMedGoogle Scholar
  133. Luiten PGM, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 28:1–54PubMedGoogle Scholar
  134. Mai JK, Ashwell KWS (2004) Fetal development of the central nervous system. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 49–94Google Scholar
  135. Mantyh PW (1983) Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections. J Neurophysiol 49:567–581PubMedGoogle Scholar
  136. Mark MH, Farmer PM (1984) The human subfornical organ: an anatomic and ultrastructural study. Ann Clin Lab Sci 14:4270–4442Google Scholar
  137. Marx JJ, Iannetti GD, Mika-Gruettner A, Thoemke F, Fitzek S, Vucurevic G et al (2004) Topodiagnostic investigations on the sympathoexcitatory brain stem pathway using a new method of three dimensional brain stem mapping. J Neurol Neurosurg Psychiatry 75:250–255PubMedPubMedCentralGoogle Scholar
  138. McKinley MJ, Congiu M, Denton DA, Park RG, Penschow J, Simpson JB et al (1984) The anterior wall of the third ventricle and homeostatic responses to dehydration. J Physiol Paris 79:421–427PubMedGoogle Scholar
  139. McKinley MJ, Badour E, Oldfield BJ (1992) Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Res 594:295–300PubMedGoogle Scholar
  140. McKinley MJ, Clarke IJ, Oldfield BJ (2004) Circumventricular organs. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 562–591Google Scholar
  141. McKinley MJ, Clarke IJ, Oldfield BJ (2012) Circumventricular organs. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 594–617Google Scholar
  142. Meibach RC, Siegel A (1975) The origins of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508–512PubMedGoogle Scholar
  143. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197PubMedPubMedCentralGoogle Scholar
  144. Mirmiran MD, Swaab DF, Witting W, Honnebier MBOM, van Gool WA, Eikelenboom P (1989) Biological clocks in development, aging and Alzheimer’s disease. Brain Dysfunct 2:57–66Google Scholar
  145. Miselis RR, Shapiro RE, Hand PJ (1979) Subfornical organ efferents to neural systems for control of body water. Science 205:1022–1025PubMedGoogle Scholar
  146. Moore RY (1973) Retinohypothalamic projections in mammals: a comparative study. Brain Res 49:403–409PubMedGoogle Scholar
  147. Moore RY (1982) The suprachiasmatic nucleus and the organization of a circadian system. Trends Neurosci 5:404–407Google Scholar
  148. Moore RY (1997) Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med 48:253–266PubMedGoogle Scholar
  149. Morrison SF (1999) RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am J Phys 276:R962–R973Google Scholar
  150. Morton A (1969) A quantitative analysis of the normal neuron population of the hypothalamic magnocellular nuclei in man and of their projections to the neurohypophysis. J Comp Neurol 136:143–158PubMedGoogle Scholar
  151. Muske LE (1993) Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42:215–230PubMedGoogle Scholar
  152. Nagai I, Li CH, Hsieh SM, Kizaki T, Urano Y (1984) Two cases of hereditary diabetes insipidus, with an autopsy finding in one. Acta Endocrinol 105:318–323PubMedGoogle Scholar
  153. Nathan PW, Smith MC (1986) The location of descending fibers to sympathetic neurons supplying the eye and sudomotor neurons supplying the head and neck. J Neurol Neurosurg Psychiatry 49:187–194PubMedPubMedCentralGoogle Scholar
  154. Nauta WJH (1946) Hypothalamic regulation of sleep in rats: an experimental study. J Neurophysiol 9:285–316PubMedPubMedCentralGoogle Scholar
  155. Nauta WJH (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat (Lond) 95:515–532Google Scholar
  156. Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–209Google Scholar
  157. Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Procter LD (eds) Reticular formation of the brain. Little Brown, Toronto, pp 3–31Google Scholar
  158. Newman HM, Stevens RT, Apkarian AV (1996) Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat. J Comp Neurol 365:640–658PubMedGoogle Scholar
  159. Nieuwenhuys R, Geeraedts LMG, Veening JG (1982) The medial forebrain bundle in the rat: I. General introduction. J Comp Neurol 206:49–81PubMedGoogle Scholar
  160. Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system, 4th edn. Springer, Berlin-Heidelberg-New YorkGoogle Scholar
  161. O’Rahilly R, Müller F (2001) Human Embryology & Teratology, 3rd edn. Wiley-Liss, New YorkGoogle Scholar
  162. Page RB (1986) The pituitary portal system. Curr Opin Neuroendocrinol 7:1–47Google Scholar
  163. Panula P, Araiksinen MS, Pirvola U, Kotilainen E (1990) A histamine-containing neuronal system in the human brain. Neuroscience 34:127–132PubMedGoogle Scholar
  164. Pelletier G, Désy L, Côté J, Vaudry H (1983) Immunocytochemical localization of corticotropin-releasing factor-like immunoreactivity in the human hypothalamus. Neurosci Lett 41:259–263PubMedGoogle Scholar
  165. Pelletier G, Désy L, Côté J, Lefèvre G, Vaudry H (1986) Light-microscopic immunocytochemical localization of growth hormone-releasing factor in the human hypothalamus. Cell Tissue Res 245:461–463PubMedGoogle Scholar
  166. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015PubMedPubMedCentralGoogle Scholar
  167. Pfaff DW, Sakuma Y (1979) Deficit in the lordosis reflex of female rats caused by lesions in the ventromedial nucleus of the hypothalamus. J Physiol Lond 288:203–210PubMedPubMedCentralGoogle Scholar
  168. Plum F, Van Uitert R (1978) Nonendocrine diseases and disorders of the hypothalamus. Res Publ Assoc Res Nerv Ment Dis 56:415–473PubMedGoogle Scholar
  169. Porrino LJ, Goldman-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205:63–76PubMedGoogle Scholar
  170. Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259PubMedPubMedCentralGoogle Scholar
  171. Price JL, Slotnick BM, Revial MF (1991) Olfactory projections to the hypothalamus. J Comp Neurol 306:447–461PubMedGoogle Scholar
  172. Pritchard TC, Hamilton RB, Norgren R (2000) Projections of the parabrachial nucleus in the old world monkey. Exp Neurol 165:101–117PubMedGoogle Scholar
  173. Puelles L (2019) Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front Neuroanat 13:20PubMedPubMedCentralGoogle Scholar
  174. Puelles L, Martinez-de-la-Torre M, Bardet S, Rubinstein JLR (2012) Hypothalamus. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier, Amsterdam, pp 221–312Google Scholar
  175. Putnam TJ (1922) The intercolumnar tubercle: an undescribed area in the anterior wall of the third ventricle. Bull Johns Hopkins Hosp 38:181–182Google Scholar
  176. Raisman G, Cowan WM, Powell TPS (1966) An experimental analysis of the efferent projections of the hippocampus. Brain 89:83–108PubMedGoogle Scholar
  177. Ranson SW (1939) Somnolence caused by hypothalamic lesions in the monkey. Arch Neurol Psychiatr 41:1–23Google Scholar
  178. Reeves AG, Plum F (1969) Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Arch Neurol 20:616–624PubMedGoogle Scholar
  179. Rempel-Clower NL, Barbas H (1998) Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 398:393–419PubMedGoogle Scholar
  180. Ricardo JA (1983) Hypothalamic pathways involved in metabolic regulatory functions, as identified by track tracing methods. Adv Metab Dis 10:1–30Google Scholar
  181. Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures of the rat. Brain Res 153:1–26PubMedGoogle Scholar
  182. Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:1–40PubMedGoogle Scholar
  183. Risold PY, Thompson RH, Swanson LW (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Res Rev 24:197–254PubMedGoogle Scholar
  184. Rittig S, Robertson GL, Siggaard C, Kovács L, Gregersen N, Nyborg J, Pedersen EB (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58:107–117PubMedPubMedCentralGoogle Scholar
  185. Roeling TAP, Veening JG, Kruk MR, Peters JPW, Vermelis MEJ, Nieuwenhuys R (1994) Efferent connections of the hypothalamic ‘aggression area’ in the rat. Neuroscience 59:1001–1024PubMedGoogle Scholar
  186. Sadun AA, Schaechter JD, Smith LEH (1984) A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res 302:371–377PubMedGoogle Scholar
  187. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181PubMedGoogle Scholar
  188. Sakurai T (2014) The role of orexin in motivated behaviours. Nat Rev Neurosci 15:710–731Google Scholar
  189. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedGoogle Scholar
  190. Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol 237:21–46PubMedGoogle Scholar
  191. Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Plum F (ed) Handbook of physiology, sect 1, Higher functions of the brain, vol V. American Physiological Society, Washington, DC, pp 169–210Google Scholar
  192. Saper CB (1990) Hypothalamus. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 389–413Google Scholar
  193. Saper CB (2004) Hypothalamus. In: Paxinos G, Mai JK (eds) The human nervous system, 2nd edn. Elsevier, Amsterdam, pp 513–550Google Scholar
  194. Saper CB (2012) Hypothalamus. In: Mai JK, Paxinos G (eds) The human nervous system, 3rd edn. Elsevier, Amsterdam, pp 548–583Google Scholar
  195. Saper CB, Fuller PM (2017) Wake-sleep circuitry: an overview. Curr Opin Neurobiol 44:186–192PubMedPubMedCentralGoogle Scholar
  196. Saper CB, Levinsohn D (1983) Afferent connections of the median preoptic nucleus in the rat: anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third ventricle (AV3V) region. Brain Res 288:21–31PubMedGoogle Scholar
  197. Saper CB, Loewy AD, Swanson KW, Cowan WM (1976a) Direct hypothalamo-autonomic connections. Brain Res 117:305–312PubMedGoogle Scholar
  198. Saper CB, Swanson LW, Cowan WM (1976b) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442PubMedGoogle Scholar
  199. Saper CB, Swanson LW, Cowan WM (1978) The efferent connections of the anterior hypothalamic area of the rat, cat, and monkey. J Comp Neurol 182:575–600PubMedGoogle Scholar
  200. Saper CB, Swanson LW, Cowan WM (1979) Some efferent connections of the rostral hypothalamus in the squirrel monkey (Saimiri sciureus) and cat. J Comp Neurol 184:205–242PubMedGoogle Scholar
  201. Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience 23:389–398Google Scholar
  202. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731PubMedGoogle Scholar
  203. Saper CB, Lu J, Chou TC, Gooley J (2005a) The hypothalamic integrator for circadian rhythms. Trends Neurosci 26:152–157Google Scholar
  204. Saper CB, Cano G, Scammell TE (2005b) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 493:92–98PubMedGoogle Scholar
  205. Sarnat HB, Flores-Sarnat L (2001) Neuropathologic research strategies in holoprosencephaly. J Child Neurol 16:918–931PubMedGoogle Scholar
  206. Saunders RC, Mishkin M, Aggleton JP (2005) Projections from the entorhinal cortex, perirhinal cortex, subiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1–16PubMedGoogle Scholar
  207. Savic I, Berglund H, Gulyas B, Roland P (2001) Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron 30:661–668Google Scholar
  208. Scharrer E, Scharrer B (1940) Secretory cells within the hypothalamus. The hypothalamus and central levels of autonomic function. Res Public Assoc Nerv Ment Dis 20:170–194Google Scholar
  209. Schwanzel-Fukuda M, Pfaff DW (1989) Origin of luteinizing hormone releasing hormone neurons. Nature 338:161–164PubMedGoogle Scholar
  210. Schwanzel-Fukuda M, Bick D, Pfaff DW (1989) Luteinizing hormone releasing hormone (LHRH)-expressing cells do not migrate in an inherited hypogonadal (Kallmann) syndrome. Mol Brain Res 6:311–326PubMedGoogle Scholar
  211. Schwanzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PMG, Hardelin J-P, Petit C (1996) Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 366:547–557PubMedGoogle Scholar
  212. Schwartz WJ, Bois NA, Hedley-Whyte ET (1986) A discrete lesion of the ventral hypothalamus and optic chiasm that disturbed the daily temperature rhythm. J Neurol 233:1–4PubMedGoogle Scholar
  213. Scolding NJ, Kellar-Wood HF, Shaw C, Shneerson JM, Antoun N (1996) Wolfram syndrome: Hereditary diabetes mellitus with brainstem and optic atrophy. Ann Neurol 39:352–360Google Scholar
  214. Sheng HZ, Westphal H (1999) Early steps in pituitary organogenesis. Trends Genet 15:236–240PubMedGoogle Scholar
  215. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219PubMedGoogle Scholar
  216. Sherin JE, Jk E, Torrealba F, Saper CB (1998) Innervation of tuberomammillary neurons by GABAergic and galalinergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18:4705–4721PubMedPubMedCentralGoogle Scholar
  217. Shimogori T, Lee DA, Miranda-Angulo A, Yang Y, Wang H, Jiang L et al (2010) A genomic atlas mouse hypothalamic development. Nat Neurosci 13:767–775PubMedPubMedCentralGoogle Scholar
  218. Shipley MT, Murphy AZ, Rizvi TA, Ennis M, Behbehani MM (1996) Olfaction and brainstem circuits of reproductive behavior in the rat. Prog Brain Res 107:355–377PubMedGoogle Scholar
  219. Sibbald JR, Hubbard JI, Sirett NE (1988) Responses from osmosensitive neurons of the rat subfornical organ in vitro. Brain Res 461:205–214PubMedGoogle Scholar
  220. Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270:209–242PubMedGoogle Scholar
  221. Smithson KG, Weiss ML, Hatton GI (1989) Supraoptic nuclear afferents from the main olfactory bulb. I. Anatomical evidence from anterograde and retrograde tracers in rat. Neuroscience 31:277–287PubMedGoogle Scholar
  222. Sofroniew MV (1980) Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28:475–478PubMedGoogle Scholar
  223. Strom TM, Hörtnagel K, Hofmann S, Gekeler F, Scharfe C, Rabl W et al (1998) Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet 7:2021–2028PubMedGoogle Scholar
  224. Swaab DF (1997) Neurobiology and neuropathology of the human hypothalamus. Handb Chem Neuroanat 13:39–137Google Scholar
  225. Swaab DF (2003) The human hypothalamus: basic and clinical aspects, part 1: nuclei of the human hypothalamus. Handb Clin Neurol 79:1–476Google Scholar
  226. Swaab DF (2004) The human hypothalamus: basic and clinical aspects, part 2: neuropathology of the human hypothalamus and adjacent structures. Handb Clin Neurol 80:1–597Google Scholar
  227. Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228:1112–1115PubMedGoogle Scholar
  228. Swaab DF, Hofman MA (1988) Sexual differentiation of the human hypothalamus: ontogeny of the sexually dimorphic nucleus of the preoptic area. Dev Brain Res 44:314–318Google Scholar
  229. Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342:37–44PubMedGoogle Scholar
  230. Swaab DF, Hofman MA, Lucassen PJ, Purba JS, Raadsheer FC, van de Nes JP (1993) Functional neuroanatomy and neuropathology of the human hypothalamus. Anat Embryol (Berl) 187:317–330Google Scholar
  231. Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167:227–256PubMedGoogle Scholar
  232. Swanson LW, Cowan WM (1975a) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. J Comp Neurol 160:1–12PubMedGoogle Scholar
  233. Swanson LW, Cowan WM (1975b) Hippocampo-hypothalamic connection: origin in subicular cortex, not Ammon’s horn. Science 189:303–304PubMedGoogle Scholar
  234. Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84PubMedGoogle Scholar
  235. Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655PubMedGoogle Scholar
  236. Swanson LW, Kuypers HGJM (1980) The paraventricular nucleus of the hypothalamus: Cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescent double-labeling methods. J Comp Neurol 194:555–570PubMedGoogle Scholar
  237. Swanson LW, McKellar S (1979) The distribution of oxytocin and neurophysin-stained fibers in the spinal cord of the rat and monkey. J Comp Neurol 188:87–106PubMedGoogle Scholar
  238. Swanson LW, Mogenson GJ, Gerfen CR, Robinson P (1984) Evidence for a projection from the lateral preoptic area and substantia innominata to the ‘mesencephalic locomotor region’ in the rat. Brain Res 295:161–178PubMedGoogle Scholar
  239. Swanson LW, Mogenson GJ, Simerly RB, Wu M (1987) Anatomical and electrophysiological evidence for a projection from the medial preoptic area to the ‘mesencephalic and subthalamic locomotor regions’ in the rat. Brain Res 405:108–122PubMedGoogle Scholar
  240. Takeda N, Inagaki S, Taguchi Y, Tohyama M, Watanabe T, Wada H (1984) Origins of histamine-containing fibres in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Res 323:55–63PubMedGoogle Scholar
  241. ten Donkelaar HJ, Lammens M, Cruysberg JRM, Hori A, Shiota K, Verbist B (2006) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M (eds) Hori a clinical neuroembryology: development and developmental disorders of the human central nervous system. Springer, Berlin-Heidelberg-New York, pp 345–428Google Scholar
  242. ten Donkelaar HJ, Lohman AHM, Keyser A, van der Vliet AM (2007) Het centrale zenuwstelsel. In: ten Donkelaar HJ, Lohman AHM, Moorman AFM (eds) Klinische Anatomie en Embryologie, 3rd edn. Elsevier, Maarssen, pp 981–1141 (in Dutch)Google Scholar
  243. ten Donkelaar HJ, Lammens M, Cruysberg JRM, Kamphuis-van Ulzen K, Hori A, Shiota K (2014) Development and developmental disorders of the forebrain. In: ten Donkelaar HJ, Lammens M, Hori A (eds) Clinical neuroembryology: development and developmental disorders of the human central nervous system, 2nd edn. Springer, Heidelberg-New York-Dordrecht-London, pp 421–521Google Scholar
  244. ten Donkelaar HJ, Broman J, Neumann PE, Puelles L, Riva A, Tubbs RS, Kachlik D (2017) Towards a Terminologia Neuroanatomica. Clin Anat 30:145–155PubMedGoogle Scholar
  245. ten Donkelaar HJ, Kachlik D, Tubbs RS (2018) An illustrated Terminologia Neuroanatomica: a concise encyclopedia of human neuroanatomy. Springer, ChamGoogle Scholar
  246. ter Horst GJ (1986) The hypothalamus, intrinsic connections and outflow pathways to the pancreas. Thesis, University of GroningenGoogle Scholar
  247. Thompson RH, Conteras NS, Swanson LW (1996) Organization of projections from the dorsomedial nucleus of the hypothalamus: a PHA-L study in the rat. J Comp Neurol 376:143–173PubMedGoogle Scholar
  248. Tigges J, Walker LC, Tigges M (1983) Subcortical projections to the occipital and parietal lobes of the chimpanzee brain. J Comp Neurol 220:106–115PubMedGoogle Scholar
  249. TNA (2017) Terminologia Neuroanatomica. Federative International Programme for Anatomical TerminologyGoogle Scholar
  250. van de Nes JAP, Kamphorst W, Ravid R, Swaab DF (1993) The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer’s disease patients. Brain 116:103–115PubMedGoogle Scholar
  251. van der Woude PF, Goudsmit E, Wierda M, Purba JS, Hofman MA, Bogte H, Swaab DF (1995) No vasopressin cell loss in the human paraventricular and supraoptic nucleus during aging and in Alzheimer’s disease. Neurobiol Aging 16:11–18PubMedGoogle Scholar
  252. VanderHorst VGJM, Holstege G (1995) Caudal medullary pathways to lumbosacral motoneuronal cell groups in the cat: evidence for direct projections possibly representing the final common pathway for lordosis. J Comp Neurol 359:457–475PubMedGoogle Scholar
  253. VanderHorst VGJM, Holstege G (1996) A concept for the final common pathway of vocalization and lordosis behavior in the cat. Prog Brain Res 107:327–342PubMedGoogle Scholar
  254. VanderHorst VGJM, Holstege G (1997) Estrogen induces axonal outgrowth in the nucleus retroambiguus-lumbosacral motoneuronal pathway in the adult female cat. J Neurosci 17:1122–1136PubMedPubMedCentralGoogle Scholar
  255. VanderHorst VGJM, Mouton LJ, Blok BF, Holstege G (1996) Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol 376:361–385PubMedGoogle Scholar
  256. VanderHorst VGJM, Terasawa E, Ralston HJ III, Holstege G (2000a) Monosynaptic projections from the nucleus retroambiguus to motoneurons supplying the abdominal wall, axial, hindlimb, and pelvis floor muscles in the female rhesus monkey. J Comp Neurol 424:233–250PubMedGoogle Scholar
  257. VanderHorst VGJM, Terasawa E, Ralston HJ III, Holstege G (2000b) Monosynaptic projections from the lateral periaqueductal gray to the nucleus retroambiguus in the rhesus monkey: implications for vocalization and reproductive behavior. J Comp Neurol 424:251–268PubMedGoogle Scholar
  258. Veazey RB, Amaral DG, Cowan WM (1982) The morphology and connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 207:135–156PubMedGoogle Scholar
  259. Veening JG, Swanson LW, Cowan WM, Nieuwenhuys R, Geeraedts LMG (1982) The medial forebrain bundle of the rat: II. An autoradiographic study of the topography of the major descending and ascending components. J Comp Neurol 206:82–108PubMedGoogle Scholar
  260. Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde and immunohistochemical study. Brain Res 303:337–357PubMedGoogle Scholar
  261. Veening JG, Te LS, Postuma P, Geeraedts LMG, Nieuwenhuys R (1987) A topographical analysis of the origin of some efferent projections from the lateral hypothalamic area in the rat. Neuroscience 22:537–551PubMedGoogle Scholar
  262. Vertes RP (1984a) A lectin horseradish peroxidase study of the origin of ascending fibers in the medial forebrain bundle of the rat. The lower brainstem. Neuroscience 11:651–668PubMedGoogle Scholar
  263. Vertes RP (1984b) Ibid. The upper brainstem. Neuroscience 11:669–690PubMedGoogle Scholar
  264. Vivas L, Chiaraviglio E, Carrer HF (1990) Rat organum vasculosum laminae terminalis in vitro: responses to changes in sodium concentration. Brain Res 519:294–300PubMedGoogle Scholar
  265. von Economo C (1920) Die Encephalitis lethargica, ihre Nachkrankheiten und ihre Behandlung. Urban & Schwarzenberg, Berlin (English translation 1931: Encephalitis Lethargica: its sequelae and treatment. Oxford University Press, London)Google Scholar
  266. von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259Google Scholar
  267. Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258:230–252PubMedGoogle Scholar
  268. Watts AG, Swanson LW, Sanchez-Watts G (1987) Ibid. I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229PubMedGoogle Scholar
  269. Wierda M, Goudsmit E, van der Woude PF, Purba JS, Hofman MA, Bogte H, Swaab DF (1991) Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer’s disease. Neurobiol Aging 12:511–516PubMedGoogle Scholar
  270. Wolfram DJ (1938) Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Proc Staff Meet Mayo Clin 13:715–718Google Scholar
  271. Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476PubMedGoogle Scholar
  272. Xuereb GP, Pritchard MML, Daniel PM (1954a) The arterial supply and venous drainage of the human hypophysis cerebri. Q J Exp Physiol Cogn Med Sci 39:199–217PubMedGoogle Scholar
  273. Xuereb GP, Pritchard MML, Daniel PM (1954b) The hypophysial portal system of vessels in man. Q J Exp Physiol Cogn Med Sci 39:219–230PubMedGoogle Scholar
  274. Zhang YH, Hosono NT, Yanase-Fujiwara M, Chen XM, Kanosue K (1997) Effect of midbrain stimulation on thermoregulatory vasomotor responses in rats. J Physiol Lond 503:177–186PubMedPubMedCentralGoogle Scholar
  275. Zimmerman CA, Leib DE, Za K (2017) Neural circuits underlying thirst and fluid homeostasis. Nat Rev Neurosci 18:459–469PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.935 Department of NeurologyRadboud University Medical Centre and Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
  2. 2.Department of NeuropathologyMedizinische HochschuleHannoverGermany

Personalised recommendations